Data-driven dark matterelectron scattering rates from the dielectric function

Yoni Kahn
University of Illinois at Urbana-Champaign CPAD Workshop, 3/19/21

Recent advances in DM-electron scattering
 SENSEI:
 SuperCDMS HVeV:

Well-motivated parameter space is very close! How do we make sure our signal rates are calibrated?

Rate predictions from QEDark

electron recoil
spectrum
crystal form factor

$$
\begin{aligned}
\frac{d R_{\text {crystal }}}{d \ln E_{e}}= & \frac{\rho_{\chi}}{m_{\chi}} \\
& N_{\text {cell }} \bar{\sigma}_{e} \alpha \\
& \times \frac{m_{e}^{2}}{\mu_{\chi e}^{2}} \int d \ln q\left(\frac{E_{e}}{q} \eta\left(v_{\min }\left(q, E_{e}\right)\right)\right) F_{\mathrm{DM}}(q)^{2}\left(\left.f_{\text {crystal }}\left(q, E_{e}\right)\right|^{2}\right) \\
\left|f_{\text {crystal }}\left(q, E_{e}\right)\right|^{2}= & \frac{2 \pi^{2}\left(\alpha m_{e}^{2} V_{\text {cell }}\right)^{-1}}{E_{e}} \sum_{i i^{\prime}} \int_{\mathrm{BZ}} \frac{V_{\text {cell }} d^{3} k}{(2 \pi)^{3}} \frac{V_{\text {cell }} d^{3} k^{\prime}}{(2 \pi)^{3}} \times \\
& E_{e} \delta\left(E_{e}-E_{i^{\prime} \vec{k}^{\prime}}+E_{i \vec{k}}\right) \sum_{\vec{G}^{\prime}} q \delta\left(q-\left|\overrightarrow{k^{\prime}}-\vec{k}+\vec{G}^{\prime}\right|\right)\left|f_{\left[\vec{k}, i^{\prime} \vec{k}^{\prime}, \vec{G}^{\prime} \mid\right.}\right|^{2}
\end{aligned}
$$

wavefunction overlap

$$
f_{\left[\overrightarrow{i k}, i^{\prime}, \vec{k}^{\prime}, \vec{G}^{\prime}\right]}=\sum_{\vec{G}} u_{i^{\prime}}^{*}\left(\overrightarrow{k^{\prime}}+\vec{G}+\vec{G}^{\prime}\right) u_{i}(\vec{k}+\vec{G})
$$

This is pure theory: how well does it compare with data? How do we calibrate charge yield from recoil spectrum?

Rate predictions from dielectric

$$
\left.\operatorname{Im}\left(-\frac{1}{\epsilon(\mathbf{q}, \omega)}\right)=\frac{\pi e^{2}}{q^{2}} \sum_{f}|\langle f| \hat{\rho}(\mathbf{q})| 0\right\rangle\left.\right|^{2} \delta\left(\omega_{f}-\omega\right)
$$

DM-electron interaction
(assumed spin-independent)
Dielectric function

$$
\Gamma(\mathbf{v})=\int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}}|V(\mathbf{q})|^{2}\left[\frac{q^{2}}{e^{2}} 2 \operatorname{Im}\left(-\frac{1}{\epsilon(\mathbf{q}, \omega)}\right)\right]
$$

That's the answer, for any material.

Directly measurable!

Electrons probe electron density just like DM. (In CM, known as "loss function")

Assume Coulomb probe is perturbative:

$$
\left.\operatorname{Im}\left(-\frac{1}{\epsilon(\mathbf{q}, \omega)}\right)=\frac{\pi e^{2}}{q^{2}} \sum_{f}|\langle f| \hat{\rho}(\mathbf{q})| 0\right\rangle\left.\right|^{2} \delta\left(\omega_{f}-\omega\right)
$$

For electron scattering, where $\hat{\rho}(\mathbf{q})$ is the electron density operator, \mathcal{S} is the dielectric function:
linear response to electron density perturbations

Just like deep inelastic scattering: fire a known probe at an unknown target to learn about its constituents

Plasmons

Semi-relativistic electron scattering not described by single-particle electron-electron scattering, but by a collective long-range charge wave (plasmon). Electron preferentially deposits $\sim 15 \mathrm{eV}$ of energy, regardless of initial kinetic energy

Avatars of the dielectric

Polarizability: measures linear response to E-fields

$$
\epsilon(\mathbf{q})=\frac{\mathbf{D}(\mathbf{q})}{\mathbf{E}(\mathbf{q})}=\frac{V_{\text {Coulomb }}(\mathbf{q})}{V_{\mathrm{eff}}(\mathbf{q})}
$$

Real-time correlator for electron density
$\epsilon^{-1}(\mathbf{q}, \omega)=1-\left.\frac{e^{2}}{q^{2}} \frac{1}{V} \int d \tau e^{i \omega \tau}\left\langle\hat{\rho}_{e}(\mathbf{q}, \tau) \hat{\rho}_{e}(-\mathbf{q}, 0)\right\rangle\right|_{i \omega \rightarrow \omega}$
Can compute with random phase approximation (RPA):

$$
\epsilon(\mathbf{q})=1-\frac{e^{2}}{q^{2}} \Pi_{q} \quad \sim \sim \sim \sim \sim \sim \sim+\ldots
$$

Exact dielectric function contains all screening and many-body effects: required to move beyond single-particle formalism

QEDark vs. data

Low momentum: plasmon

(but no above-gap excitations accessible)

Large momentum

free-electron gas is a decent model
$q=3.0 \mathrm{keV}$
Need measurements: this range of q determines 1-electron rate!

Many-body response function

Works for atoms/molecules too!

New formalism:

$$
\left.\operatorname{Im}(\epsilon)(\mathbf{q}, \omega) \propto \sum_{f}\left|\left\langle\psi_{f}\right| e^{i \mathbf{q} \cdot \mathbf{x}}\right| \psi_{i}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}-\omega\right)
$$

Just measure the dielectric function!
(e.g. EELS, X-ray scattering)

Old formalism:
$\left|f_{\text {ion }}^{n l}\left(k^{\prime}, q\right)\right|^{2}=\sum_{m}\left|\int d^{3} x \psi_{k^{\prime}}^{*}(\vec{x}) \psi_{n l m}(\vec{x}) e^{i \vec{q} \cdot \vec{x}}\right|^{2}$
But which wavefunctions?
What about "Sommerfeld enhancement"?
What about electron correlation or relativistic effects?

Optimizing direct detection

Best option: move to a heavier galaxy where DM is faster. Next best option: find a material with slow electrons

Can access full plasmon peak in heavy-fermion materials:

Charge yield calibration

Basic idea: EELS with a CCD

Can directly correlate energy loss with charge yield. Yes, this is a theorist's cartoon, but this is a
necessary calibration for precise signal predictions!

EELS + CCD needs

- Thin substrate (electron mean free path ~ 0.2 um in Si)
- Barrier layer at CCD surface
- Low beam current (1 electron per bunch)
- Spot size smaller than 1 pixel (~ 15 um in SENSEI/Oscura)
[P. Abbamonte lab, UIUC]

- Time-of-flight for coincidence
- Momentum resolution to $\sim 0.5 \mathrm{keV}$
- Energy resolution to $\sim 0.5 \mathrm{eV}$
- Magnetically shielded environment (<3 mG)
- Ultrahigh vacuum (1e-10 torr)
- Not-too-low temp (90-110 K)

