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Future trackers will be 4D!

« The 4D-trackers will play a key role at the future machines
— Reduce backgrounds, track reconstruction, triggering all will need precision

timing information, in addition to the precision position
— Enhanced capabilities: PID and LLP reconstruction

— All of these pose unique challenges, and opportunities to detector and

electronics design, and event reconstruction

Measurement

Technical requirement

Tracking for ete-

Granularity: 25x50 um? pixels

5 um single hit resolution

Per track resolution of 10 ps

Generally the same as ete-

Tracking for 100 TeV pp Radiation toleran up to 8x1017 n/cm?

Per track resolution of 5 ps

Technical requirements for future trackers:
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https://science.osti.gov/-/media/hep/pdf/Reports/2020/DOE_Basic_Research_Needs_Study_on_High_Energy_Physics.pdf?la=en&hash=A5C00A96314706A0379368466710593A1A5C4482

4D trackers: present and future

« CMS and ATLAS are building Gen-1 4D-tracking detectors
— Single or two hits per charged particle, and large pixels
— Next generation detectors will be more sophisticated and replace tracker
» Active R&D on technologies to achieve the required detector
performance
— Sensors, ASIC, front-end electronics developments

ATLAS timing detector CMS timing detector _
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Development directions

» Next gen detector R&D requires a lot of infrastructure, expertise,
and development cycles

— Our group has developed dedicated readout boards and testing
infrastructure for characterization of sensor prototypes,

— Design, manufacture and test sensor prototypes

— Design, manufacture and test full systems integrating sensors
and readout electronics

Mip @ afrentX SILVACO Wafer

Qualitatively assessment of
LGAD/ACLGAD properties
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Development directions

 International collaborative developments

— Development of AC-LGAD sensors and 4D trackers
— Characterization of irradiated and pre-rad sensors, extensive infrastructure with
monitoring all key variables

« Work presented here is based on Snowmass LOI #142 in IF, and
US-Japan collaborative consortium

— A. Apresyan, K. Di Petrillo, R. Heller, R. Lipton, S. Los, C. Madrid, C. Pena, S. Xie,
T. ZImmerman (FNAL)

— G. D’Amen, W. Chen, G. Giacomini, E. Rossi, A. Tricoli (BNL)

— K. Nakamura, K. Hara, T. Ueda, S. Kita (KEK, U. Of Tsukuba)

— S. Mazza H. Sadrozinski, B. Schumm, A. Siden (UCSC)

— Y. Degerli, F. Guilloux, C. Guyot, J.P. Meyer, A. Ouraou, P. Schwemling (Saclay)
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Low-Gain Avalanche Detectors (LGAD)

« Low-Gain Avalanche Detectors (LGAD): ﬂ

technology for HL-LHC timing detector: ~30 pS ™ aap soneore
— Silicon detectors with internal gain

« Sensors developed for CMS and ATLAS show high degree of uniformity
and excellent time resolution

— @ain is uniform within ~5%, high yield, radiation tolerance for HL-LHC
— No-gain gaps between pixels: due to presence of JTE

. _FNAL 120 GeV proton beam _ HPK type 3.1, 195V, -20 C 15 FNAL 120 GeV proton beam HPK type 3.1, 195V, -20 C
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Low-Gain Avalanche Detectors (LGAD)

« Sensors for 4D-trackers should have no dead areas

— Traditional LGADs have a gap between pixels, to terminate the field
between pixels

— Improve Gen-1 trackers to achieve 100% fill factor, high position resolution
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AC-coupled LGADs

« Ongoing R&D to eliminate dead area
— Simultaneously improve position resolution via charge sharing

» Collaboration with BNL, KEK on AC-LGAD developments

— 100% fill factor, and fast timing information at a per-pixel level

— Signal is still generated by drift of multiplied holes into the substrate and
AC-coupled through dielectric
— Electrons collect at the resistive n+ and then slowly flow to an ohmic

contact at the edge.
Diagram credit: CNM
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AC-LGAD measurements in beams

» Excellent performance in the beam showing high efficiency
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BNL strip AC-LGAD

— First measurements in the beam in 2020:

« BNL sensors: JINST 15 P09038 (2020)

» Time resolution and position resolution achieved targeted goals
— 100% particle detection efficiency across sensor surface
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AC-LGAD measurements in beams

* Recent test beam campaign: Mar 2021
— Measurements of a variety of BNL and HPK sensors

« Read out 6 interior strips + DC ring + MCP reference
« Bias scan from 200 to 225 V

100 micron pitch, 20 micron gaps

IIme resolution, strip 2
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BNL strip AC-LGAD
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AC-LGAD measurements in beams

« Basic position reconstruction with 2 strips
— Plot average amplitude fraction vs X (amplitude[i] / amplitude sum)
— In each event, calculate amplitude fraction and find corresponding X from
fit line

100 micron pitch, 20 micron gaps
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« Reach 15 micron resolution total width, limited by tracker resolution
* Places limit on sensor resolution less than 5-10 microns
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AC-LGAD measurements in beams

« Single BNL sensor with a variety of strips geometries

— 100, 150 and 200 micron pitch (80 um width)
— Read out 5-6 strips from each pitch at a time

Space resolution, 2 strips
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BNL strip AC-LGAD
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Reach 16 um and 35 ps resolution even with 50% larger pitch
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AC-LGAD measurements in beams

« KEK and U. of Tsukuba group designed AC-LGAD sensors
fabricated at HPK with pad, strip and pixel type electrodes.

— Both pad and strips sensors, compare performance with both
geometries, evaluate differences between manufacturers

« Large pixels allow more detailed study of position
reconstruction, not limited by tracker resolution

« Assess the differences in designs and optimize them, based
| on experimental performance in lab, test-beams

HPK pixel AC-LGAD
Efficiency, 90 mV_ Efficiency, 45 mV Efficiency, 20 mV__

B Charge sharing

& Fermilab
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AC-LGAD measurements in beams

« KEK and U. of Tsukuba group designed AC-LGAD sensors
fabricated at HPK with pad, strip and pixel type electrodes.

— Both pad and strips sensors, compare performance with both
geometries, evaluate differences between manufacturers

« Large pixels allow more detailed study of position
reconstruction, not limited by tracker resolution

« Assess the differences in designs and optimize them, based
| on experimental performance in lab, test-beams

1 C-2, primary pad only, 180 V B-2, primary pad only, 230 V
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Buried layer LGADs

We can engineer the silicon substrate to tailor the characteristics of the device
» Buried gain layer LGAD can provide a more radiation hard, stable device
« (@Gain layer is below epitaxy — AC coupling or more sophisticated topside

processing can be integrated

« Combine with small pixels, or CMOS MAPS to design specialized sensors.

Usual reach-through implanted Gain layer grown over implant — can be
denser, top can be custom processed

from top — limited options

Reach-through

‘L
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Gain layer
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Buried gain layer AC-LGAD sensors in test beam

amp[2] {amp[2]>10&&amp[2]>amp[1]&&amp[2]>amp[3] }
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improve the processing of wafers

« Very successful SBIR collaboration with

—_
o
o

-
o

=

oo i HI_I...H..MI_I.

(@)

CaCtUS Materlals, InC 50 100 150 200 250 300 350 amp[;?o
— Wil follow up with another round production Signal amplitude distribution
8-channel strips,
200 micron pitch,
50 micron metal Efficiency for DC ring Efficiency for leading hit in strip 2 or

I/0/ VU A. ApIcYyadll | VITAUY cuc



MAPS sensors: CACTuS detector
« Collaboration with CEA Saclay

— Depleted monolithic active timing sensor using a CMOS 150 nm radiation hard
technology from LFoundry
— Promises to be: low cost, radiation hard, and with good time resolution
— Originally intended for ATLAS HGTD detector, but could be used for EIC,
future colliders
* The in-pixel front-end electronics of each pixel is made of a fast charge-
sensitive amplifier(CSA) followed by a leading-edge discriminator.

— The analog output of the CSA and the digital output of the discriminator can be
monitored out of the chip through dedicated on-chip buffers.

CACTuS

DIGITAL PADS

Simplified block
diagram of
Cactus detector.

1 mm x 0.5 mm pixels
(7 x 6 = 42 pixels)

Column Control + Global Shift Regist:
Bias Generator + Analog Buffer

JINST 15 P06011
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MAPS sensors: CACTuS detector

Detailed measurements performed in the lab and in beam:
JINST 15 P06011
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— Test results are promising but some problems observed
— Analog S/N is lower than expected from simulations
— This effect is likely due to the in-pixel power metal rails,
increase the capacitance of the charge collection diode
— New version is being designed

|deas to integrate LGAD and MAPS detectors:

G. Deptuch in Snowmass meeting:
https://indico.fnal.gov/event/45625/
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Readout electronics for precision timing sensors

Need appropriate “fools”to perform high precision position and timing
measurements, without complicated ASIC and DAQ
— Developed readout boards for the characterization of LGADs
— 4-,16- and 26-channel boards are a cost-effective and simple way to test large
channel count sensors
Several iterations produced and improved over time
« Have been critical in measurement campaigns for LGAD, and AC-LGAD sensors

Fermilab

4—channel LGAD Test Board
Sergey Los  Apr.25, 2017

FNAL 4-ch readout board 16-ch sensor LGAD on Fermilab readout board

ETI-E2
V-8 1917
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Readout electronics

* New development: low power 26-ch board

— Goals: Increase the channel count, reduce power
consumption, improve time resolution performance

— Maintain low noise, and low jitter

— Achieve sensor’s intrinsic limitation on time
resolution: around 30 ps resolutions (for 50 um thickness)

« Measurements of 4-ch prototypes showed very
good performance with particles

— Full-size boards produced, being tested now

26-channel board design

> 8 3 UGSC board (14) z - # UCSC board (14) FRCI. : : ' ) '

E i & 16-ch amplifier (chan2) = 30F & 16-ch amplifier (chan2) o8 E 3 UCSC board (14)

7)) 22 L & BGB707 highi p_t|mp_ed. (chan1) § C & BGB707 high input imped. (chan* c 70 E z égggg;n,ﬂlgfirn(::ﬁf;ed (chan1)

= C e i o . | ¥ BGB707500hm inputimped. (chan() = - & BGB707 50 ohm input imped. (ch g 65 = # BGB707 50 ohm input im|$ed (chanQ)

o Py ] 323707 2nd gen (chan2) _g 25 C & BGB707 2nd gen (chan2) =} E é BGB707 2nd gen (chan2) .

° N & BGB707 2nd gen w/ loop (chan1) b - # BGB707 2nd gen w/ loop (chan1) '© 60 E # BGB707 2nd gen w loop (chant)

R C 5 17, E 9 p

8 1.8 (0] 9 55 ;

o B . . e < o E

£ . .f — — i £ 50

o 16 [ E

4 - 45 =

9: 1.4 40 ;

G ot - 35

- 150 160 170 180 190 200 210 220 i [N EPUPETINS EPEPEPS IR SR B 30

Bias voltage [V] 150 160 170 180 190 200 21 0 150 1eo 170 180 190 200 21 0 220

= Bias voltage Bias voltage [V]
QM5 | aF rernina

— | 20  5/8/20  A.Apresyan | CPAD 2021




Fermilab 4D-trackers test beam infrastructure
« Permanent setup in FNAL test beam facility (FTBF)

— Movable: slide in and out of beamline as needed, parasitic use of beam

— Environmental controls: sensor temperature (-25 C to 20 C), and humidity, monitoring

— Remote control (stages, HV, LV), logging & reconstruction; ot~ 10 ps time reference (MCP)
— Cold operation of up to 10 prototypes at the same time

— DAAQ: high bandwidth, high ADC resolution scope 4- or 8-channel scope

— Record 100k events per minute, tracker with ~10 um resolution

\s o™ Tlmlng I

_ mobile rack :
v Plxels |

[ Cold box
Bl . (5 LGAD slots)

' ey ERR /|5 LV, motor stage
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Infrastructure at SiDet

« LGAD sensors characterization facility
— Environmental chamber with the same capabilities and DAQ as in MTest
— Infrared laser with 15 um beamspot and XYZ motion stages for scanning
— Sr%% and Ru'% beta-sources for gain, time resolution measurements

— Studies of large samples of sensors, stability and detailed understanding
without the rush of beam tests

Fermllab Laser Study Setup
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Timing ASIC approaches: LE or CFD

« Simulation Model of Front-end Electronics for High-precision
Timing Measurements with LGADs
— LGAD pulses are from Weightfield2 (WF2) simulation
— Different pulse shape as a function of irradiation

« Consider various options for the pre-amp:
— Simulation scans BW, SNR, and compare LE vs CFD approaches

- Green: computational nodes
* Blue: measurement nodes

L Waveform
Analysis

CFD+ToT

From WF2

LGAD Pulse

o

Random gaussian Time-domain Final pulse
at every sample convolution with  analyzed with
FEE impulse different
response algorithms
s, !
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Analysis Summary of Results (ST = 0.5 ns)
Leading Edge

38 ps 35 ps 29 ps Pre-rad

37 ps 32 ps 26 ps 5x1014 n/cm2
38 ps 27 ps 1x1015 n/cm?2
Constant Fraction

37 ps 35 ps 30 ps Pre-rad

33 ps 31 ps 25 ps 5x1074 n/cm?
34 ps 24 ps 1x1015 n/cm?2

» 30-35 ps target resolution achieved by LE and CFD up to SNR =30
- Target resolution achieved up to irradiations of 1x1015 n/cm?2
 40-50 ps resolution achieved when SNR = 20 at the largest dose

s, | £ Fermilab
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Analysis Summary of Results (ST = 1.0 ns)
Leading Edge

45 ps 37 ps 29 ps Pre-rad
41 ps 34 ps 29 ps 5x10'4 n/cm?
47 ps 28 ps 1x1015 n/cm?2

Constant Fraction

36 ps 33 ps 26 ps Pre-rad
33 ps 31 ps 26 ps 5x1014 n/cm?2
37 ps 23 ps 1x1075 n/cm?2

« 30-35 ps target resolution achieved by LE and CFD up to SNR = 30
- ST =1 ns — observe a large performance gap when using CFD
. 40 50 ps resolution (CFD only) when SNR = 20 at the largest dose

af Fermiiap
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Timing ASIC with CFD: FCFDO
* Develop a CFD based ASIC for LGAD fast timing readout

— Expect better performance for low S/N after irradiation, no need for time-walk
correction, stability, simplicity of operation,

— Many innovative solutions designed and implement by T. Zimmerman (FNAL)

* The chip recently received from TSMC

— Currently being tested, and then will mount on dedicated readout board for
testing with sensor, betas and beams.

— Follow up with subsequent productions of full chips, with more channels

FCFDO chip layout
Input transistor current = 1ImA Add 150 ohms to input transistor gate to “double its noise” a -
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Summary

« Timing is an enabling technology for future experiments
— The last dimension to be used in collider experiments!

— Will bring improvements in event reconstruction, triggering, and new
handles in searches for new physics!

* Future tracking detectors will likely be required to have significant
timing precision: both lepton and hadron colliders

— Timing precision of 20-30 ps achieved with several Si-based
technologies

— Collaborative efforts are a key for the progress in many challenging
directions
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