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Shockley—Ramo current or the
induced current at a readout
electrode from the instantaneous
change of electrostatic flux lines
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Signal is distinct from the drift
current measured In traditional
silicon detectors

Readout Electrode

Bipolar signal that will
integrate to zero in a few
nanoseconds

Current from a moving point
charge can be expressed as

= quv (Shockley-Ramo Theorem)
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., Advantages of Shockley-Ramo Current

-+ There a several advantages of measuring the induced
current

- Very fast rise time

- Signal begins as soon as the electrostatic flux changes
at the readout electrode

- No need to wait for the drift charge
- Complex shape information

-+ The shape of the induced current depends on the depth
and position of the charge deposit

-+ Angle of incidence information for charged particles
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. 7 Challenges of Shockley-Ramo Current

- Small signal
- Initial signal ~10% the size of the drift current’s maximum amplitude

- Requires a low threshold comparator

- Low Time Jitter
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Vdmta signal LAY

+ Requires a readout system with low capacitance and high front-end
transconductance

Or ~

- Balance input current with pixel density and power/cooling
limitations

- More details can be found In:

R. Lipton and J. Theiman. “Fast timing with induced current
detectors”. In: Nucl. Instrum. Meth. A 945 (2019), p. 162423. doi:
10.1016/).nima.2019.162423.
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https://www.osti.gov/biblio/1556958
https://www.osti.gov/biblio/1556958

Requires sensor with a large  Biased 50um sensor in TCAD

(~10) pixel-pitch to sensor X
By

thickness ratio oo Bectotedoueas o

501‘.“.
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Small pitched 25x25 pm pixels

Lower pixel capacitance 0.
<0
0\

Low Noise
Fast rise time

200-300 pm thick silicon
sensor

Drift and induced current is
distributed on multiple pixels

n_on_p deSign nOmina”y Used R. Lipton and J. Theiman
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Two different signal types

simulated N
MIPs - 4fC uniformly 100
distributed through T
Sensor =
Point - 4fC deposited at
a specific depth 250

No time walk or ionization 300
fluctuations :
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- Front end amplifier simulated in SPICE

- Transimpedance amplifier with
feedback resistor

- ASIC will have to use 3D architecture

Noise and Landau fluctuations added

500 MHz Gain Bandwidth
65nm feature size

Transimpedance amplifier
consumes ~4pA
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ot Vdmte signal 2R AV;

to simulated signal from TCAD

Extracted noise induced jitter of

~16ps

to fit in 25um pixel pitch
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-+ 3D integration will also minimize

capacitive coupling
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Arrival Time (ns)

.param MPV=77.9*Thick*pc_elec
.param Thick=50

.step param mcl1seed 1 50 1
.param pc_elec=1.6e-7

.param lcs=5.2e-7*Thick

.param rm=5.31 e7

.param qge=1.6e-1

-param gm-({ge} {ld})/(?- {k}*{ThH
“param psd~2+{k}* (7} gami/om}
.param psd=

.paramE 1.38066e-2

.param T=293

.param ld=.1e-6

lib opamp.sub

.param FMAX-I e9

.param RF

.param tstep-]/‘ FMAX}
.param sngas zt( I?}slll'}{/m 1))
.param ipsd= E!
.gram |g|g-sqrt {npsd} é: }
.step param mcseed 1

.tran {tstep} 15n

.noise V(n002) V(0) dec 100 100k 1000k




_,Weighting Field

Shockley-Ramo current directly ~ Square
proportional to the weighting field FX€ @ Twwlby .

1 = L,qu

The direction of the electric
field in the direction of the drift
particles velocity

Free charge depleted
Rectangular

Readout electrode at unit Pixel (g ~120-89_4 HM
potential -

All other electrodes at ground

B 100 V/cm
B 10V/cm
-1 1V/cm
M ov/cm
M -1v/em
-10 V/ecm
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The weighting field is highly
dependent on pixel geometry
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Shockley-Ramo current begins as drift

charge starts moving = Pixel 1
- e Pixel 7
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Fast Current Detector Signal Shape

- Shockley-Ramo current has a
time dependent signal shape

Pixel 1

|

Pixel 7

0.4

< ] Pixel 3
é g—_ Pixel 9
- Sums to 0 over a few =
nanoseconds § i
< S
- Only pixels that readout drift S N N
. e N
current will have a position -
charge integral IR CRENCCRE RO O

- Signal shape on neighboring
pixels dependent on particles
incident angle

+ Central and edge pixels
receive different fractions of
the drift and induced current
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- CMS is currently building a
dual layer module to trigger

at

L1 on “high” pr tracks

CMS Preliminary Phase 2 Simulation
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+ Charged particles
with large incident
angles have
significant drift and
Shockley-Ramo
currents Iin
neighboring pixels

- An ASIC with
periodic current
sampling could
perform an on-chip
angle measurement
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Investigating dedicated variables Time To Maximum vs. Angle

4.5
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to extract angular information
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Time to Maximum

Total relative amplitudes
Cluster width

Time To Maximum
w
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Small (25um) pixel-pitch

Need ASIC to calculate simple 1
quantities for triggering

Trigger could use multivariate L y : L L
(MVA) techniques Angle (Deg)

Possible to integrate MVAs
into the ASIC as well

OO
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- Novati Wafer with 30x100 pm pitch left

over from an 8” wafer development project

- Possible to connect sensor to ETROCO
- ETROC designed for LGAD sensor

- QOperating at the edge of the chips
capabilities (~3 fC)

- Wire bonding seems to be the lowest
capacitance connection scheme

Simulated ETROC Performance
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Measurement Setup

- Novati wafer has a small
contact area intended for
bump bonds

——

e

T

[ G700 & e ‘ I e

-+ 13um bump bond pad »

+ Investigated bump bond
fanout
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- Parallel fanout lines will
likely have excessive
capacitance

Wil be challenging to land
a wire bond in such a
small area
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- Introduced a Shockley—Ramo current detector

- Traditional silicon detector with large (~10) pitch-to-thickness
ratio

+ Excellent time resolution (<20ps)
- Requires low capacitance readout chain
- 3D integration
- Small Signal Threshold
- Pixel geometry can be adjusted to enhance weighting field
- Has the capability to measure a particle’s incident angle
-+ Can be used to create a track trigger at Level-1

- Simple bench setup in the works to detect Shockley-Ramo signal
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