

Forward silicon tracking detector design and R&D for the future Electron-Ion Collider

Xuan Li (xuanli@lanl.gov), Cheuk-Ping Wong, Walter Sondheim, Matt Durham, Christopher Prokop, Melynda Brooks, Cesar da Silva, Astrid Morreale, Ming Liu

Outline

- Motivation.
- The proposed forward silicon tracker design and performance for the Electron-Ion Collider.
- Results from the ongoing R&D for the silicon technologies.
- Summary and Outlook.

Motivation

 The future Electron-Ion Collider (EIC) will utilize high luminosity high energy electron+proton and electron+nucleus collisions to solve several fundamental questions.

- e-p collisions at the EIC:
 - –(Polarized) p, $d/^{3}$ He beams at 40-275 GeV.
 - -(Polarized) e beam at 2.5-18 GeV.
 - –Instant luminosity $L_{int} \sim 10^{33-34} \text{ cm}^{-2} \text{sec}^{-1}$. A factor of ~1000 higher than HERA.
 - -Bunch crossing rate: 1-10 ns.
- e-A collisions at the EIC:
 - –Multiple nuclear species (A=2-208) and variable center of mass energies.
 - –Instant luminosity $L_{int} \sim 10^{33-34} \text{ cm}^{-2} \text{sec}^{-1}$.
 - -Bunch crossing rate: 1-10 ns.

Motivation

 The future Electron-Ion Collider (EIC) will utilize high luminosity high energy electron+proton and electron+nucleus collisions to solve several fundamental questions.

 Heavy flavor products such as D⁰ meson at the EIC can provide further constraints on the initial nucleon/nuclear parton distribution functions and explore the final state hadronization process with better precisions.

How to measure heavy quarks at the EIC?

• At the EIC, hadrons or jets which contain heavy quarks can be identified by detectors using their unique lifetime and masses.

- Physics-driven detector performance requirements:
 - –Fine spatial resolution (<100 μm) for displaced vertex reconstruction.
 - -Fast timing resolution to suppress backgrounds from neighboring collisions.
 - -Low material budgets to maintain fine hit resolution.

EIC detector requirements for a silicon vertex/tracking detector

- To meet the heavy flavor physics measurements, a silicon vertex/tracking detector with low material budgets and fine spatial resolution is needed.
- Particles produced in the asymmetric electron+proton and electron+nucleus collisions have a higher production rate in the forward pseudorapidity. The EIC detector is required to have large granularity especially in the forward region.

• Fast timing (1-10ns readout) capability allows the separation of different collisions and suppress the beam backgrounds.

Conceptual design for a proposed forward silicon tracker at the EIC (I)

- GEANT4 simulation for the proposed Forward Silicon Tracker (FST) in the Fun4All framework:
 - The proposed forward-rapidity silicon tracking detector (FST) with 1.0 < η < 3.5:
 - 3 planes of MAPS silicon detector and 2 forward planes of HV-MAPS silicon detector.

LANL FST integrated inside the EIC

See more details in arXiv:2009.02888

LANL FST geometry parameters

Plane index	z (cm)	r _{in} (cm)	r _{out} (cm)	Pixel pitch (um)	Silicon thickness (um)
1	35	4	25	20	50
2	62.3	4.5	42	20	50
3	90	5.2	43	20	50
4	115	6	44	36.4	100
5	125	6.5	45	36.4	100

Conceptual design for a proposed forward silicon tracker at the EIC (II)

- GEANT4 simulation for the proposed Forward Silicon Tracker (FST) in the Fun4All framework:
 - The proposed forward-rapidity silicon tracking detector (FST) with 1.0 < η < 3.5:
 - 3 planes of MAPS silicon detector and 2 forward planes of HV-MAPS silicon detector.

Different geometries have been explored

Monolithic Active Pixel Sensor (MAPS) sensor

Technology candidates LGAD/AC-LGAD sensor

DMAPS (MALTA) sensor

Conceptual design for a proposed forward silicon tracker at the EIC (II)

- GEANT4 simulation for the proposed Forward Silicon Tracker (FST) in the Fun4All framework:
 - The proposed forward-rapidity silicon tracking detector (FST) with $1.0 < \eta < 3.5$: 3 planes of MAPS silicon detector and 2 forward planes of HV-MAPS silicon detector.

Different geometries have been explored

Technology candidates

Name	Technique	Pixel Size	Integrati on Time	Thickness per layer
Monolithic Active Pixel Sensor (MAPS)	180 nm (future 65 nm) Tower Jazz	~ 20 X 20 μm ²	~ 100 ns	< 0.3%X ₀ per layer
Radiation hard MAPS (MALTA)	180 nm Tower Jazz	36.4 Χ 36.4 μm ²	< 5 ns	< 0.5%X ₀ per layer
LGAD or AC- LGAD	Low Gain Avalanche Diode	100 Χ 100 μm ²	< 100 ps	< 1%X ₀ per layer

Tracking performance of the proposed Forward Silicon Tracker (FST)

- Tracking performance of the proposed forward silicon tracker has been evaluated within the Fun4All framework.
- For example, the hybrid design of FST based on the MAPS and DMAPS technologies integrated inside the Time Projection Chamber (TPC) and the forward GEM tracker within the Beast magnet.

Heavy Flavor signals enabled by the FST

- The full analysis framework which includes the event generation (PYTHIA), detector response in GEANT4 simulation, beam remnant & QCD background, and hadron reconstruction algorithm have been setup.
- Mass distributions of reconstructed D-meson family in 10 GeV electron and 100 GeV proton collisions with integrated luminosity: 10 fb⁻¹.

Reconstructed D-meson mass spectrum

• Different detector geometries and magnet options have been studied. More details in arXiv:2009.02888.

Detector geometry

R&D setup for the silicon technology candidates

- LGAD, AC-LGAD and MALTA sensors have been delivered to LANL (special thanks to colleagues at UCSC, FNAL and CERN).
- We start with the LGAD bench testing for a single LGAD sensor with a Sr⁹⁰ source. The data readout is processed by the CAEN 1730s digitizers.

Front view of the Lab setup

*Note that connector J1 is not bonded to a sensor pad.

Side view of the Lab setup

Data analysis of the LGAD digitizer data

Los Alamos National Laboratory

Bias voltage dependent charge collection (I)

• Reference based on the laser scan tests. • Charge (ADC counts) VS Bias voltage.

LGAD sensor performance

Los Alamos National Laboratory

14

Bias voltage dependent charge collection (II)

• Reference based on the laser scan tests. • Charge (ADC counts) VS Bias voltage.

LGAD sensor performance

Next steps

• LGAD test:

- The telescope setup for Sr⁹⁰ source and cosmic ray tests is underway.
- Plan to use a GHz laser scan system to test the timing resolution.
- Will carry out the irradiation tests using the LANL LANSCE facility.
- MALTA test:
 - We're working on the setup and plan to carry out the Sr⁹⁰ source and cosmic ray tests.
- Detector conceptual design:
 - Will optimize the detector conceptual design and implement the service parts based on the R&D results.

2-layer LGAD telescope setup

Engineer drawing of the FST conceptual design

Summary and Outlook

- The future EIC requires advanced silicon detectors to realize high precision particle tracking and identification measurements.
- The initial design of the proposed forward silicon vertex/tracking detector meets the EIC heavy flavor physics requirements.
- R&D work for one of the silicon detector candidates: LGAD has achieved the first test results.
- We look forward to collaborate with more institutions toward the detector developments and construction for the EIC.

Backup

Layout of the LANL FST

- The LANL FST is a hybrid design of ITS-3 type and MALTA Monolithic Active Pixel Sensor (MAPS) technology.
- The service parts and the initial concept for each technology has been developed. Optimization is underway.

LANL FST

4th disk layout (MALTA)

