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The Landscape of Noble Liquids for Particle Detection

“Detectors using noble elements as the detection medium, such as liquid and gaseous argon and xenon, have risen to become a prime
technology for the following Science Drivers: 1) Pursue the physics associated with neutrino mass; 2) Identify the new physics of dark
matter; 3) Explore the unknown: new particles, interactions and physical principles”

Basic Research Needs for High Energy Physics Detector Research & Development
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What is NEST?

e Inter-collaboration collaboration
o  Members from LUX, LZ, XENON, (n)EXO, RED10o, COHERENT, DUNE, ICARUS, MicroBooNE, SBN

e We provide models of energy deposition, as well as code to implement this in an actual detector
o  https://github.com/NESTCollaboration

® Primary code is in C++, and bindings are available to easily use NEST in Python
e Xenon models are the most mature, but accurate argon models are available!
e Integration with ROOT and Geant4

e Collaboration website: http://nest.physics.ucdavis.edu/
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Who uses NEST?

e Lots of people!

e NEST publications and code have been cited

by 200 journal articles, and an additional

so+ theses and conference proceedings

(@)

@)
(@)
(@)

Dark matter limits and projections
Physics searches

Detector calibrations

Theoretical models

e Snowmass Letter of Interest was signed by
140+ authors across 4 continents, including

experimentalists and theorists
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Modeling Atomic and Nuclear Physics of Xenon

e NEST models are semi-empirical: built as averages of world data, incorporating

physically-motivated models when feasible
o  Data as far back as 1970s (Kubota)

e Models for various types of energy deposits: electronic recoils, nuclear recoils, alphas, etc.

e Calculate average light yield, charge yield, recombination » simulate actual energy deposits in a
detector
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Nuclear Recoils in Xenon

Models the light and charge signals, as well as
the amount of energy lost to heat

Light Yields for Nuclear Recoils
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Charge Yields for Nuclear Recoils
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Electronic Recoils in Xenon

Charge Yields for B-Electronic Recoils
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Two-step conversion electron process, depositing
32.1and 9.4 keV. The second deposition depends
on the time between the decays, exponentially

8$3mpry in Xenon

Light Yields (LY) and Charge Yields (QY) for 83™Kr
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Energy Resolution in Xenon Low Energy: Ar Peak
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Discrimination in Xenon

Simulation of LUX 2013
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Recombination Physics in Xenon

Fluctuation in electron-ion recombination is the largest obstacle to ER/NR discrimination.

NEST models these using lessons from data: these fluctuations are super-binominal and skewed.

Recombination Probability
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Pulse Shape in Xenon

NEST can simulate S1 and S2 (and single electron) pulse shapes in liquid xenon, e.g. to use in raw
data generation. Below: NEST simulations, overlapped with LUX measurements.
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Nuclear Recoils in Argon

Nuclear recoil argon model now
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Electronic Recoils in Argon

Electronic recoil model also published in NEST code, based on world data

Disclaimer: this model is still in the progress of being finalized, subject to change
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“How can I use NEST?”

e [I'mgladyou asked!

e NEST is packaged with a variety of tools for you and your collaboration
o  C++ libraries to implement in your framework and/or GEANT4
o  Python bindings to the C++ code, to use in your existing Python analysis framework
o  Limited system requirements for most usages
o  Examples + tutorials
m  execNEST, rootNEST, bareNEST in C++
m  Nestpy tutorial (really excellent notebook!): http://bit.ly/nestpy

o Documentation: analysis notes available at http://nest.physics.ucdavis.edu/
o  Want to request a new functionality? You can do so via Github: https://github.com/NESTCollaboration/
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Demonstration
of NEST

[Note: if viewing a PDF
document, click on the
image to access the demo
video on Youtube]

March 18, 2021 V. Velan


http://www.youtube.com/watch?v=0JiQnPG-7A4

Closing Remarks

e NEST is directly tied to Priority Research Direction 6: “Improve the understanding of detector

microphysics and characterization”
o  Butour code and models are applicable to many PRDs, TRs, Science Drivers
o  E.g.“Manipulate detector media to enhance physics reach”, “Addressing challenges in scaling technologies”
o  Fundamentally, NEST is a one-stop shop to answer most questions about designing your detector and
doing data analysis

e NEST is stable enough to be reliable, while also evolving to incorporate new data and features

® Recent + upcoming changes: improvements to LAr ER model, LXe ER model, gamma
calibrations, W-value, noise
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