Improving the Proportional Scintillation Signal of Liquid Argon by Xenon Doping

CPAD, March 18th, 2021

Ethan Bernard

LLNL-PRES-819616

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Motivation

- Single-phase liquid argon is the workhorse target medium for low cross-section physics
 - ICARUS T600, MicroBoone, DUNE, and many others^{*}
- For the lowest energy events, dual-phase xenon is the most successful medium
 - Nuclear recoils yield measured to 300 eV **
 - Electronic recoils resolved down to 186 eV ***

Property	Gas scintillation wavelength	Gas scintillation lifetime	Liquid phase ionization energy	Ease of purification	Kinetic match to light particles
Argon	128 nm	~ 3.2 μs	14.3 eV	Easier	A = 39.95
Xenon	178 nm	~ 22 ns	12.13 eV	Difficult	A = 131.29

Argon light is more difficult to produce and more difficult to sense

Motivation – Physics

- WIMP dark matter detection
 - Darkside-20K / GADMC
 - Especially important for extending the reach of ionization-only analysis
- Neutrino physics via the CEvNS channel*
 - Sterile neutrino searches
 - Neutrino magnetic moment searches
 - Non-standard interactions and new light mediators
 - Flavor-blind observation of supernovae, including potential insight into the mass hierarchy^{**}
- Anti-proliferation technology
 - Reactor fuel cycle monitoring with CEvNS^{***}

* O<u>.G. Miranda</u> et al., arXiv:2003.12050 ; L.J. Flores et al. arXiv:2002.12342 ; C. Blanco et al. arXiv:1901.08094

** P. Agnes et al., arXiv:2011.07819; *** C. Hagmann and A. Bernstein, arXiv:nucl-ex/0411004

Motivation – Technology

- Underground argon infrastructure*
 - Urania plant (330 kg / day) under construction at the Kinder-Morgan Doe Canyon facility, Colorado, USA
 - Aria cryogenic distillation column for purification under construction in the Seruci Mine, Sardinia, Italy
- VUV SiPM development
 - Durable, compact, and radiopure relative to PMTs
 - Numerous cryogenic amplification schemes^{**}

* W. Bonivento doi:10.1088/1742-6596/1468/1/012234

** M. D'Incecco et al. arXiv: 1706.04213 ; A. Falcone et al., arXiv: 2001.09051

Single electron spectra: Xenon and Argon

Measurement of wavelengthshifted argon S2 light extracted electron Direct measurement of

xenon S2 light

Chemistry of S2 light production

Pure Ar

Fast $e^- + Ar \rightarrow slow e^- + Ar^*$ Threshold 11.8 eV Inelastic collision of electron with argon

 $Ar^* + Ar \rightarrow Ar_2$

Argon finds a ground state atom and forms a metastable excimer molecule

 $Ar_2 \rightarrow 2 Ar + hv \rightarrow 128 nm; 2 - 3 \mu s lifetime Excimer molecules decompose and emit photons$

Chemistry of S2 light production

Ar + Xe

Conclusion: New reactions allow for more light production with longer wavelengths and faster timing.

Energy transfer in Ar Xe gas mixtures

Emission spectra of xenon-doped argon gas mixtures at 1.4 bar under excitation by ³²S heavy ion beam

Energy transfer in Ar Xe gas mixtures

We expect a most of the S2 light will be wavelength shifted to 147 nm by ~ 50 ppm of Xe addition to Ar gas

Energy transfer in Ar Xe liquid mixtures

SiPM sensitivity to VUV light

Lawrence Livermore National Laboratory

S2 Light Measurement Improvement by Addition of Xenon To Argon

Improvements in light production and sensing of the S2 pulse

- Xe containing excimers emit at longer wavelengths that are more efficiently measured.
- Xe containing excimers emit their light faster, shortening pulse duration.
- Xe* has a lower threshold for excitation \rightarrow more excitations per drift electron

Improvements in ionization yield of the liquid (speculative)

- Xenon has a lower ionization energy that argon \rightarrow more electrons per unit deposited energy
- Xenon may be ionized by the Penning process $Ar^* + Xe \rightarrow Ar + Xe^+ + e^-$

Xenon-Doped Argon S2 Experiment

Solubility considerations

Solubility considerations

Extrapolating to 100 / T = 1.054 from plot at right Predicts n^{Sat} = 7.1% at 2 bar

Henry's law

 $H^{cc} = \frac{Xenon \ number \ fraction \ in \ liquid}{Xe \ number \ fraction \ in \ gas}$

From solubility data we estimate

 $H^{cc} \sim 250 - 450$ at 2 bar

Assume H^{cc} = 330

Then 50 ppm in gas implies 1.65% liquid doping at 2 bar (23% of solubility limit)

> Distillation effects are very strong; this affects circulation design

Detector Vessel

Lawrence Livermore National Laboratory

Detector Vessel

Design approach

Detector Vessel

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Prepared by LLNL under Contract DE-AC52-07NA2

Detector design

Xenon-Doped Argon Circulation Scheme

Chemistry of S2 light production

