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▪ Single-phase liquid argon is the workhorse target medium for low cross-section 
physics
— ICARUS T600, MicroBoone, DUNE, and many others*

▪ For the lowest energy events, dual-phase xenon is the most successful medium
— Nuclear recoils yield measured to  300 eV **

— Electronic recoils resolved down to 186 eV ***

Motivation

* K. Majumdar, K. Mavrokoridis, arXiv:2103.06395 *** D.S. Akerib et al., arXiv:1709.00800** B.G. Lenardo et al., arXiv:1908.00518

Property Gas scintillation 
wavelength

Gas scintillation 
lifetime

Liquid phase 
ionization energy

Ease of 
purification

Kinetic match 
to light particles

Argon 128 nm ~ 3.2 ms 14.3 eV Easier A = 39.95

Xenon 178 nm ~ 22 ns 12.13 eV Difficult A = 131.29

▪ Argon light is more difficult to produce and more difficult to sense

https://arxiv.org/search/physics?searchtype=author&query=Majumdar%2C+K
https://arxiv.org/search/physics?searchtype=author&query=Mavrokoridis%2C+K
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▪ WIMP dark matter detection
— Darkside-20K / GADMC
— Especially important for extending the reach of ionization-only analysis  

▪ Neutrino physics via the CEnNS channel*

— Sterile neutrino searches
— Neutrino magnetic moment searches
— Non-standard interactions and new light mediators
— Flavor-blind observation of supernovae, including potential insight into the mass hierarchy**

▪ Anti-proliferation technology
— Reactor fuel cycle monitoring with CEnNS***

Motivation – Physics

* O.G. Miranda et al., arXiv:2003.12050 ;  L.J. Flores et al. arXiv:2002.12342 ;  C. Blanco et al. arXiv:1901.08094    

** P. Agnes et al., arXiv:2011.07819 ;  *** C. Hagmann and A. Bernstein, arXiv:nucl-ex/0411004  

https://arxiv.org/search/physics?searchtype=author&query=Majumdar%2C+K
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▪ Underground argon infrastructure*

— Urania plant (330 kg / day) under construction at the Kinder-Morgan Doe Canyon facility, Colorado, 
USA

— Aria cryogenic distillation column for purification under construction in the Seruci Mine, Sardinia, 
Italy    

▪ VUV SiPM development
— Durable, compact, and radiopure relative to PMTs

— Numerous cryogenic amplification schemes** 

Motivation – Technology

* W. Bonivento doi:10.1088/1742-6596/1468/1/012234 ** M. D’Incecco et al. arXiv: 1706.04213 ; A. Falcone et al., arXiv: 2001.09051 
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Single electron spectra:  Xenon and Argon

DarkSide50 SE spectrum 
PRL, 121, 081307 (2018)

XeNu detector SE spectrum 
J. Xu, Magnificent CEnNS workshop (2020)

72 PMT 
photoelectrons / 
extracted electron

Direct measurement of 
xenon S2 light

23 PMT photoelectrons / 
extracted electron

Measurement of wavelength-
shifted argon S2 light
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Chemistry of S2 light production
Pure Ar

Fast e- + Ar → slow e- + Ar* Inelastic collision of electron with argon

Threshold 11.8 eV

Ar2 → 2 Ar + hn Excimer molecules decompose
and emit photons

128 nm; 2 - 3 ms lifetime

Argon finds a ground state atom and 
forms a metastable excimer molecule

Ar* + Ar → Ar2
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Chemistry of S2 light production
Ar + Xe

Fast e- + Ar → slow e- + Ar* Inelastic collision of electron with argon

Threshold 11.8 eV

Ar2 → 2 Ar + hn

Excimer molecules decompose
and emit photons

128 nm; 3.2 ms lifetime

Ar* + Xe  → ArXe
Argon and xenon form 
metastable excimer molecules

Fast e- + Xe  → slow e- + Xe*

Threshold 8.4 eV

Inelastic collision of electron with Xenon

Xe* + Xe  → Xe2

Ar* + Ar → Ar2

ArXe → Xe + Ar + hn

Xe2 → 2 Xe + hn

147 nm; 300? ns lifetime

178 nm; 22 ns lifetime

Conclusion:  New reactions allow for more light 
production with longer wavelengths and faster timing.
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Energy transfer in Ar Xe gas mixtures

T. Efthimiopoulos et al. 
J. Phys. D: Appl. Phys. 30
1746 (1997)
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Emission spectra of xenon-doped argon gas mixtures at 1.4 bar under 
excitation by 32S heavy ion beam 
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Energy transfer in Ar Xe gas mixtures

Emission spectra of 
xenon-doped argon 
gas mixtures at 1 atm 
in a gas proportional 
counter

We expect a most of the S2 light will be wavelength shifted to 
147 nm by ~ 50 ppm of Xe addition to Ar gas

78 ppm

5.9 ppm

T. Takahashi et al. 
NIM 205 591-596 (1983)
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Energy transfer in Ar Xe liquid mixtures

C. Galbiati et al. arXiv: 2009.06238
Review talk: Andrea Zani, CPAD 2018

A. Neumeier et al.  
EPL 109 12001 (2015)

D. Whittington,  JINST 11
C05019 (2016)
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SiPM sensitivity to VUV light 

Yuto Ohashi, Hamamatsu Photonics K.K. CHEF Conference (2019)

QE of 147 nm detection is about 60% 
higher than 128 nm detection

1
2

8
 n

m

1
4

7
 n

m



12
LLNL-PRES-819616

S2 Light Measurement Improvement by 
Addition of Xenon To Argon

▪ Xe – containing excimers emit at longer wavelengths that are more efficiently measured.

▪ Xe – containing excimers emit their light faster, shortening pulse duration.

▪ Xe* has a lower threshold for excitation → more excitations per drift electron

Improvements in light production and sensing of the S2 pulse

Improvements in ionization yield of the liquid (speculative)

▪ Xenon has a lower ionization energy that argon → more electrons per unit deposited energy

▪ Xenon may be ionized by the Penning process Ar* + Xe → Ar + Xe+ + e-



13
LLNL-PRES-819616

Xenon-Doped Argon S2 Experiment

Detector Vessel

Liquid Argon

Argon Gas

SiPM Array
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Solubility considerations

Detector Vessel

Xenon-doped liquid

Xenon-doped gas

Evaporation &
Condensation

Dissolution & 
Crystallization 

Deposition & 
Sublimation
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Xe fraction in gas ∝ PXe0

mSolid

mLiquid = mGas ~ RT ln(PXe) 

Solubility limit
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Solubility considerations

. . . .

Extrapolating to 
100 / T = 1.054 from plot at right
Predicts nSat = 7.1% at 2 bar

1) W. H. Yunker and G. D. Halsey Jr.,
J. Phys. Chem., 64(4) (1960) 484.

(Liq)
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Henry’s law

Detector Vessel

Evaporation &
Condensation

Hcc =
𝑋𝑒𝑛𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑙𝑖𝑞𝑢𝑖𝑑

𝑋𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑔𝑎𝑠

From solubility data we estimate

Hcc~ 250 − 450 at 2 bar

Distillation effects are very strong; 
this affects circulation design

Assume Hcc = 330

Then 50 ppm in gas implies
1.65% liquid doping at 2 bar
( 23% of solubility limit )

Liquid 16,500 ppm Xe

Gas 50 ppm Xe
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Design approach

Detector Vessel

Evaporation &
Condensation

Liquid 16,500 
ppm Xe

Gas 50 
ppm Xe

Conventional phase-change
heat exchanger method fails
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Xe concentrates 
and solid Xe forms
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Design approach

Detector Vessel

Evaporation &
Condensation

Liquid 16,500 
ppm Xe

Gas 50 
ppm Xe

Heated weir method fails

Xe concentrates 
and solid Xe forms
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Design approach

Detector Vessel

Evaporation &
CondensationGas 50 

ppm Xe
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Liquid 16,500 
ppm Xe

Gas << 50 
ppm Xe

Liq ~ 50 
ppm Xe
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Design approach

Detector Vessel

Evaporation &
CondensationGas 50 

ppm Xe
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Liquid 16,500 
ppm Xe

Gas << 50 
ppm Xe

Liq ~ 50 
ppm Xe Cooling 

Cool vessel directly; prevent 
evaporation on walls
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Detector design
GM Cryocooler

LN thermosiphon
condenser

LN thermosiphon
Upper evaporator
(cools can upper flange)

LN thermosiphon
Lower evaporator
(condenses argon)

TPC in detector can
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Detector design
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Low obstruction path for neutron 
scattering measurements
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Detector design
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Xenon-Doped Argon Circulation Scheme
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Chemistry of S2 light production

Liquid argon

Argon gas

Gate grid

Anode grid

Frequent collisions  
Inelastic threshold energy never reached.

Two collision types:

Elastic collisions only add to the 
kinetic energy of the recoiling atoms.

Inelastic collisions raise the recoiling 
atoms to an excited electronic state.  

Infrequent collisions  
Inelastic threshold energy often 
reached.
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