Purity Monitoring for ProtoDUNE-SP

Wenjie Wu (UCI), on behalf of the DUNE collaboration **CPAD** Instrumentation Frontier Workshop March 18, 2021

DEEP UNDERGROUND NEUTRINO EXPERIMENT

DUNE and ProtoDUNE-SP

- DUNE is a next-generation long-baseline neutrino oscillation experiment based on liquid argon TPC (LArTPC) technology.
- ProtoDUNE-SP is the single-phase prototype of DUNE at CERN, which finished its 2-year Phase-I running in July 2020.
- LAr impurities (e.g. O₂, H₂O) capture the ionized electrons, therefore lower and bias the measured charge.
- A large value of the drift electron lifetime corresponds to higher liquid argon purity.

Schematic of ProtoDUNE-SP

Purity monitor

- A miniature TPC to measure the lifetime of drift electrons.
- same length 25 cm.

3

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

Argon

crvostat

nto

Principle of the purity monitor

- It actively generates electrons by shinning light on the photocathode.
- The attenuation of the charge from the cathode to the anode gives the lifetime of drift electrons in the liquid.
 - Small statistical error: many flashes per measurement
 - Small space charge effect: small active volume

Drift time of electrons between the anode and the cathode

$$e^{-t_{\rm drift}}/\tau$$

Lifetime of the drifting electrons \rightarrow gives the concentration of impurities

Components of the purity monitor

- Xe flash lamp light source
- AI-Ti-Au photocathode for drift electron generation
- Cathode/anode grids for charge screening at readout
 - Transparency/Inefficiency: determined by the geometry of the grids and E-fields settings
- Accelerator rings (Field rings) for field-shaping to give an uniform electric field in the drift volume

M. Adamowski et al., JINST 9, P07005 (2014).

Assembly in ProtoDUNE-SP

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

2021.3.18

Purity monitors in ProtoDUNE-SP-I

7

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

Highlights in ProtoDUNE-SP-I

- Low signal strength has limited the precision and measuring ranges of PrMs in previous LArTPC experiments.
 - Using 8 fibers (8-channel feedthrough, Conax Technologies BSWS) instead of one. The signal is 6 times larger.
- Ran PrMs at large Cathode/Anode HV ratios (50/250 V, 50/500 V). Longer drift time so as to lower Q_A/Q_C during ProtoDUNE-SP-I running.

$$Q_A/Q_C = e^{-t_{\rm drift}}/\tau \to \tau = -$$

 $\ln(Q_A/Q_C)$

Fit to precisely measure the charge

- An integration RC circuit was used in the readout to measure the charge.
- A waveform model was established.
- Parameterize induced current.
- Free parameters: t_{rise} , t_{start} , $V_0 = Q/C$.

 \checkmark Good agreement to the waveform data.

$$t = \text{Time} - t_{\text{start}}$$
Output voltage at rising edge: $t \le t_{\text{rise}}$ Observed maximum voltage V_{max}

$$V(t) = V_0 \frac{1 - \exp(-t/\text{RC})}{t/\text{RC}}$$

$$V_{\text{max}} = V(t_{\text{rise}}) = V_0 \frac{1 - \exp(-t_{\text{rise}}/\text{RC})}{t_{\text{rise}}/\text{RC}}$$

$$V_{\text{L}}(t)$$
: Extra voltage caused by induced current:
Anode: $V_{\text{L}}(t) = at$ ($t < 0$), $V_{\text{L}}(t) = V_{\text{L0}} \exp(-\frac{t - t_{\text{rise}}}{\text{RC}})$ ($t > 0$). Cathode: $V_{\text{L}}(t) = 0$

9

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

$$V(t) = V_{\max} \exp\left(-\frac{1}{2}\right)$$

 $t - t_{\rm rise}$

Electron lifetime measurement by PrM

- Large Cathode/Anode HV ratio resulted in NOT 100% transparency of the cathode grid.
- Transparency correction is necessary to take account for the loss of Q_A .
 - Taking data at a calibration point (high purity) with full-transparency E-field (small Cathode/ Anode HV ratio: 1:20) at 7 different voltages: 40/800 V, 50/1000 V, 75/1500 V, 100/2000 V, 125/2500 V, 150/3000 V, 175/3500 V. Drift time ranges from 0.2 - 0.8 ms.
 - Q_A/Q_C v.s. drift time can be obtained, and then calculated $(Q_A/Q_C)_{\text{expected}}$ at large HV ratio (drift time 1.2/2.3 ms).
- The transparency correction factor can be determined as

10

J trans

- $= \frac{(Q_A/Q_C)_{\text{expected}}}{(Q_A/Q_C)_{\text{expected}}}$
 - $(Q_A/Q_C)_{\text{observed}}$

Transparency correction to the lifetime measurement

- Fit to the full-transparency data at 7 cathode/anode HVs and 3 PrMs.
 - Calculate $(Q_A/Q_C)_{\text{expected}}$ at large HV ratio (50/250) V and (50/500) V.
- Uncertainties include statistical fluctuations, baseline of the waveform, RC constants, and grid inefficiencies. - ~1% (excluding transparency correction) for each HV point of top and bottom PrMs.

2021.3.18

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

Q_A/Q_C for 2.3 ms drift time

- Transparency correction factor measured at the calibration point was used to correct Q_A/Q_C and lifetime values over the ProtoDUNE-SP Phase-I running period.
 - Stat.+Syst. uncertainty with transparency correction: Top PrM 1.9%, Middle PrM 2.2%, Bottom PrM 3.9%.

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

2021.3.18

Drift electron lifetime from purity monitors

- Validated with cosmic ray tagger data.
- High LAr purity and electron lifetime (> 30 ms) achieved at ProtoDUNE-SP.
- Key component of LArTPC calibration corrects charge loss caused by LAr impurities.

Apply PrM results to LArTPC calibration

- Electron lifetime $\tau = 1/(k_A \cdot n_s)$
 - k_A : electron attachment rate, n_s : impurity concentration.
 - k_A is a function of the E-field. Purity monitors run at 10-100 V/ cm and TPC runs at ~500 V/cm.
 - Electron lifetime at TPC E-field ($\tau_{\rm TPC}$) can be determined from electron lifetime at PrM E-field (τ_{PrM}) with an attachment rate correction:

$$\tau_{\rm TPC} = \tau_{\rm PrM} \cdot k_{\rm A}(V_{\rm PrM})/k_{\rm A}(V_{\rm T})$$

- $k_A(V_{PrM})/k_A(V_{TPC}) \approx 1.3$ obtained from a parameterization fit to the O₂ data.
- Shape of k_A v.s. E-field for H₂O is similar to O₂ in the range (0.01-1) kV/cm.

Calibration scheme of ProtoDUNE-SP

- Electron lifetime calibrated with purity monitors.
- Space charge effect corrected with cosmic rays.
- Position calibration based on cosmic rays.

15

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

- Absolute energy calibration: stopping muons in cosmic rays.
- Other calibration methods under development: Ar39, neutron source, laser, radioactive source.

Charge attenuation and non-uniformity on TPC signal are corrected

Design of purity monitors for ProtoDUNE-SP-II

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

Proposed purity monitor for ProtoDUNE-SP-II

- the syst. uncertainty introduced by transparency correction.
 - Enough drift time: 2.3 ms
 - Full-transparency of the grid
- The distribution of the electric field was studied by simulation.
- The inefficiency and transparency of grids were calculated for different configurations.

• DUNE is preparing ProtoDUNE-SP Phase-2 run, expected to start in late 2022.

• A long purity monitor was proposed to substitute for the middle PrM, to reduce

Simulation of the electric field

- An example of configuration of the Grid:
- r (wire radius): 150 um
- d (distance between wires): 2 mm

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

• To study the uniformity of the electric field, we used ANSYS Maxwell3D to simulate the distribution of electric field given the geometry and voltage settings of the PrM.

E3=~200 V/cm

Simulation of the electric field

• The electric flux $\int \vec{E} \cdot d\vec{S}$ in the drift volume along the drift path was calculated from the simulation results.

near the Grid.

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

2021.3.18

• The electric field is uniform distributed in the most of the drift region as expected, but has slight distortion

Grid geometry: Hexagonal mesh

Tc/Ta/Ec/Ea Strip width (um)							
	1 mm	1.5 mm	1.8 mm	2.0 mm	4.0 mm	High ine 5.0 mm	8.0 mm
32	100%/100%/	100%/100%/	100%/100%/	100%/100%/	100%/100%/	100%/100%/	100%/100%
	0.00796/0.0204	0.0147/0.0377	0.0192/0.0491	0.0222/0.057	0.0571/0.146	0.0765/0.196	0.139/0.35
50	100%/100%/	100%/100%/	100%/100%/	100%/100%/	100%/100%/	100%/100%/	100%/100%
	0.00593/0.0152	0.0117/0.0299	0.0155/0.0397	0.0182/0.0466	0.049/0.125	0.0663/0.17	0.123/0.31
63.5	100%/100%/	100%/100%/	100%/100%/	100%/100%/	100%/100%/	100%/100%/	100%/100%
	0.00484/0.0124	0.01/0.0257	0.0135/0.0347	0.016/0.041	0.0446/0.114	0.0609/0.156	0.115/0.29
100	94.1%/99.6%/	100%/100%/	100%/100%/	100%/100%/	100%/100%/	100%/100%/	100%/100%
	0.00277/0.0071	0.00693/0.0178	0.00981/0.0251	0.0119/0.0304	0.0364/0.0931	0.0505/0.129	0.098/0.25
200		79.4%/86.6%X	89.6%/96 0.004 0.0. Ma	anufactur	ed and p)%/	100%/100% 0.0727/0.18
parency 500			tes	st them ir	the lab	6%/ 	100%/100% 0.0393/0.10

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

2021.3.18

20

• Hexagonal mesh is easier to solder and manufacture.

• Transparency (Tc/Ta) and inefficiency (Ec/Ea) of cathode/anode grids were calculated with different configurations of pitch size and strip width. (O. Bunemann et al, Canad. J. Res. 27a (1949) 191.)

Summary and Prospect

- The offline fit method works well for the charge (Q_A/Q_C) measurement.
- Achieve 1% Q_A/Q_C uncertainty at the calibration point (drift time \leq 0.8 ms).
 - Uncertainty is 1.9% for the top purity monitor after transparency correction for low transparency runs over ProtoDUNE-SP-I period.
- Electron lifetime measured by PrMs are applied to the calibration scheme.
- Longer PrM was proposed for ProtoDUNE-SP-II. The simulation shows good uniformity of E-field in the most of the drift region.
- Several grids with different configurations are manufactured and will be test in the lab.

21

Stay tuned!

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

Diagram of the Purity Monitor

Readout electronics photo-cathode ground grid Use an integration RC circuit, voltage \propto charge field rings quartz fiber • Do not use pure current amplifiers (voltage \propto current) for signal/background issues Need to convert anode grid observed voltage into anode charge on cathode and anode light pulser

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

Waveform of PrM Signals

Output voltage = Impulse response of the circuit \bigotimes Input current

 $t = \text{Time} - t_{\text{start}}$ Output voltage at rising edge: $t \le t_{rise}$ $V(t) = V_0 \frac{1 - \exp\left(-t/RC\right)}{\sqrt{DC}}$ *t*/RC $V_0 = Q/C$ is the measurement of charge on the cathode and anode of the purity monitor 24 Wenjie Wu I Purity monitoring for ProtoDUNE-SP 2021.3.18

Observed maximum voltage $V_{\rm max}$ Output voltage at falling edge: $t > t_{rise}$ $V_{\text{max}} = V(t_{\text{rise}}) = V_0 \frac{1 - \exp\left(-t_{\text{rise}}/\text{RC}\right)}{1 - \exp\left(-t_{\text{rise}}/\text{RC}\right)}$ $V(t) = V_{\max} \exp\left(-\frac{t - t_{\text{rise}}}{\text{RC}}\right)$

Fit to precisely measure the charge

- A waveform model was established.
- Parameterize induced current.
- Free parameters: t_{rise} , t_{start} , $V_0 = Q/C$.
- Fix RC to average values measured at different HVs
- Free linear baseline function

 \checkmark Good agreement to the waveform data.

 $t = \text{Time} - t_{\text{start}}$ Output voltage at rising edge: $t \leq t_{rise}$ Observed maximum voltage $V_{\rm max}$ $V_{\text{max}} = V(t_{\text{rise}}) = V_0 \frac{1 - \exp\left(-t_{\text{rise}}/\text{RC}\right)}{t_{\text{rise}}/\text{RC}}$ $V(t) = V_0 \frac{1 - \exp\left(-t/RC\right)}{t/DC}$ $V_{\rm L}(t)$: Extra voltage caused by induced current: Anode: $V_{\rm L}(t) = at \ (t < 0), V_{\rm L}(t) = V_{\rm L0} \exp(-\frac{t - t_{\rm rise}}{\rm RC}) \ (t > 1)$

25

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

Output voltage at falling edge: $t > t_{rise}$

Time (µs)

RC

$$V(t) = V_{\max} \exp\left(-\frac{t - t_{\text{rise}}}{\text{RC}}\right)$$

> 0). Cathode:
$$V_{\rm L}(t) = 0$$

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

2021.3.18

26

Cathode/Anode HV = -40 V/800 V

UCIRVINE DUCE

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

2021.3.18

Cathode/Anode HV = -50 V/1000 V

Cathode/Anode HV = -75 V/1500 V

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

2021.3.18

UCIRVINE DUCE

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

2021.3.18

29

Cathode/Anode HV = -100 V/2000 V

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

2021.3.18

Cathode/Anode HV = -125 V/2500 V

400

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

2021.3.18

Cathode/Anode HV = -150 V/3000 V

Cathode/Anode HV = -175 V/3500 V

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

2021.3.18

Lifetime measurement for transparency correction

- Fit to full transparency data (2020/Jan/11) at different cathode/anode HVs to obtain the lifetime at high purity. Calculate $(Q_A/Q_C)_{\text{expected}}$ at 50/250 V and 50/500 V.
- signal waveform, cathode and anode RC constants, and uncertainties in the grid shielding inefficiencies.
 - Other uncertainties such as signal rise time, electron drift time are found to be small.
- The uncertainty of Q_A/Q_C (excluding transparency correction) is ~1% for each HV point in the top and bottom PrMs.

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

2021.3.18

33

• The measurement uncertainties include statistical and time-dependent fluctuations, uncertainties in the baseline of the purity monitor

• Float Q_A/Q_C at drift time = 0 ms (GainCor) in the fit so results not affected by cathode/anode gain difference and electron loss on grids.

Baseline subtraction

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

2021.3.18

Baseline subtraction

Wenjie Wu I Purity monitoring for ProtoDUNE-SP

2021.3.18

Apply PrM results to LArTPC calibration

How to apply PrM results to the calibration for LArTPCs? Attachment rate correction is needed.

- Electron lifetime $\tau = 1/(k_{\rm A} \cdot n_{\rm s})$
 - For a certain type of LAr impurity (O₂, H₂O etc): k_A is the electron attachment rate, n_s is the impurity concentration
- k_A is a function of the E-field. Purity monitors run at 10-100 V/cm and TPC runs at ~500 V/cm.
- Electron lifetime at TPC E-field (τ_{TPC}) can be determined from electron lifetime at PrM E-field (τ_{PrM}) with an attachment rate correction:

$$\tau_{\rm TPC} = \tau_{\rm PrM} \cdot k_{\rm A}(V_{\rm PrM})/k_{\rm A}(V_{\rm TPC}).$$

• $k_A(V_{PrM})/k_A(V_{TPC}) \approx 1.3$ obtained from

$$k_A = \frac{\frac{a_1}{b_1} + a_1E + a_2E^2 + a_3E^3 + a_4E^4}{1 + b_1E + b_2E^2 + b_3E^3 + b_4E^4}.$$

- Parameterization from Craig Thorn's document 'Attachment and Recombination in LAr'.
- Though absolute attachment rates could be very different between O₂ and H_2O , shapes of the k_A v.s. E-field curve for H_2O is expected to be similar to O_2 in the E-field range 0.01-1 kV/cm.

Electric Field (kV/cm)

Purity monitor and CRT/TPC electron lifetime

- The impurity measured by purity monitors and TPC/CRT are in good agreement.
- Provided PrM lifetime to ProtoDUNE-SP analysis group for run-by-run lifetime calibration.

