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‣ Impurities in LAr (O2, H2O, etc.) significantly reduce charge and light signals 

‣ Ultra-high purity LAr (<1 ppb) is required for long drift distances (> 3.6 m) 

‣ A mathematical model is important to understand the dynamics of LAr impurities

‣ Useful for detector design, optimization, and operation

Motivation
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Model Description

4

‣ A quantitative kinetic model of impurity distribution is constructed

‣ Two species (Ar and impurity) in four places (gas, liquid, contact surfaces with gas/liquid)

‣ Each process is described by an ordinary differential equation

‣ The entire model is the sum of 7 processes
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‣ Full model is a non-linear 4th order ODE

‣ Full derivation can be found in the paper: arXiv:2009.10906

‣ Solutions without outgassing (#6) and sampling (#7):

Determine Henry’s Coefficient
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ci,l(t) = cssi,l + C1 · e�kF t + C2 · e�kSt,

ci,g(t) = cssi,g + C3 · e�kF t + C4 · e�kSt.

Ultimate 
concentration

Fast 
Components 

(~secs)

Slow 
concentration 

(~hrs)

Amount of the Liquid in the system

Evaporation rate of the system
determined by the heat input

Time constant of the impurity concentration

‣ Henry’s coefficient is the partition of an impurity between gas and liquid 
phases in equilibrium

‣ The model predicts a way to measure Henry’s Coefficient

‣ Cleaning rate is defined as rs= ks x ni,l 
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https://arxiv.org/abs/2009.10906
https://arxiv.org/abs/2009.10906


‣ For studying basic properties of LAr: measured longitudinal diffusion of 
electrons (NIMA 816 (2016) 160)

‣ Gas purification only

‣ Additional heating power can be varied 0-150 W

‣ Oxygen and water concentrations measured by sampling LAr into gas 
analyzers (0.2 ppb precision) 

BNL 20-L LAr Test Stand
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‣ Oxygen concentration record with other operating parameters (Temp, Press, 
Level…)

‣ Time evolution of concentrations measured under many different controlled 
conditions (heating power, level….)

‣ 4 independent datasets contained in the analysis

Henry's Coefficient for Oxygen
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Hxx = 0.84+0.09
�0.05

‣ Henry’s coefficient by the model including 
systematics is consistent with literature value 0.91

Set #1 Set #2 Set #3 Set #4

Set #1



‣ The full model is numerically fitted to all the data

‣ The Henry’s coefficient is determined

‣ The “purification off” regions also fitted

Full model: Numerical fit to the data
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‣ Effective leak is the impurity rate entering the liquid

‣ Effective leak rate is less than the total leak from 
atmosphere

‣ A fraction of the total leak rate enters the gas purification 
system before the impurity can reach the liquid

‣ Leak rate deduced from the model fit to liquid 
concentration therefore is the effective leak rate

‣ The total leak rate can be determined:

‣ ~10-9 mol/s 

‣ The ratio of effective leak to total leak decreases as the 
heating power (evaporation rate) increases



‣ The dependence of effective leak rate on the input heating power can be 
explained by a simple back diffusion model:
• The larger revp (higher heating power) or smaller cross section area(Ac)

• The lower concentration in the gas

Keep Impurity Away from LAr- Necked Baffle
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revp, evaporation rate

Vm, mole volume of GAr

Ac, cross sectional area perpendicular to the flow direction

D, di↵usion coe�cient of the impurity

‣ Adding a necked baffle near the top region is expected 
to prevent impurities from reaching the LAr surface

‣ The idea will be tested in a new system
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‣ Design for LArTPC field response measurement

‣ 260 Liter LAr Volume
• 22” ID + 40” depth

• Sufficient for small LArTPC

‣ Quick turn-round time of <1 week with ultra-high purity (<1 ppb) by gas purification

‣ Cryogenic operation studies last year

‣ Ideal system for future impurity studies, instrumentation testing, and other LArTPC measurements

The new 260-L system
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‣ A mathematical model for impurity distribution and time evolution in 
a noble liquid cryogenic system is constructed and validated with 
data  
(submitted to NIM, arXiv:2009.10906)

‣ The model provides a way of measuring Henry’s coefficient for an 
impurity in argon
• The measured Henry’s coefficient for Oxygen is consistent with literature

‣ The model can be used to improve the performance of the existing 
detectors and to design future detectors

‣ The model suggests adding a necked baffle will help in reducing 
impurity concentrations in the detector

‣ More results are expected with the new 260-L system

Summary
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