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Micro/NanoMachining/3D Print/ALD ->
MicroDynodes->Unique PMT's

Self-aligned stack “teacup”
Dynodes, 50 um Si wafers

Form & Fit Prototype

8 stage microdynode PMT prototype.
ceramic body, 1x1 cm active area



Micromachined Compact tPMT->LPM

- MEMS techniques Si, SiO, glass, ceramic... yield
MCP-like secondary electron(SE) channelized dynodes ->
-> PM's suitable for use in:
» High Magnetic Fields (like MCP-PMT). Dynode Stack
» Precision Timing (like MCP-PMT)
»High rates - UNLIKE MCP-PMT
»Linear Response - UNLIKE MCP-PMT
»Low Power - UNLIKE MCP-PMT
»Exceptional Compactness
> Large Areas/Arbitrary Shapes
Dynode stages ~100-500 ym thick
Self-Supporting, Self-Aligning
No Separate Vacuum Envelope; Side Connectors
Standard MEMS, Fab Tooling, Economics

Thickness for 8-10 Stage “PMT"<3 mm
Channelized: PC, p.e. gain, and Anode- >

+ Essentially No Cross-Talk + High B-field operation




MCP-PMT Compared with PMT
* MCP-PMT Superior time resolution - risetime, dwell time/transit time small
- secondary electrons cannot diffuse sideways

* MCP-PMT Magnetic field Operation: PMT very limited
MCP secondary electrons - laterally confined paths to the anode.

- MCP Rate, Dynamic Range and Linearity: deficits compared with PMT
- MCP resistance-dominated vs PMT with dynodes independently powered.
- quiescent current/power ~x10-100 larger than signal current.
- High rates/intensity - MCP resistive Ohmic heating causes thermal emission.
- RC time constant: ~PMT w/resistive base: poor rate, linearity performance.

* PMT with individual dynode HV power (Cockcroft-Walton, transistor bases,
other): no quiescent current ->

- densely packed systems like calorimeters

- remote applications like satellites.
- Cosmic ray experiments used PMT powered by floating batteries in series.

- MCP-PMT: most are costly; make relatively little use of microelectronic
manufacturing technologies.



PMT Compared with SiPM

SiPM Magnetic field Operation: Exceptional
SiPM QE: Exceptional for many wavelengths:. resolves p.e.
SiPM Compactness: Exceptional
SiPM Time Resolution: Excellent
SiPM Cost: Low ... BUT
SiPM Rate, Dynamic Range, Linearity,Noise, Afterpulse, X-talk->deficits

- RC time constant: ~NPMT w/resistive base: low rate, even with quenching.
Many applications: needs cooling - adds complexity and size
Linearity over large dynamic range compromised
Afterpulsing & Cross-Talk affect usefulness in many applications
Radiation Resistance limited: metal envelope PMT w/ quartz window-> GRads

Newer PMT —
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-> Combine Best of PMT, SiPM, MCP-PMT by Channelizing the Dynodes
- Adapt MEMS, 3D printed glass & metal technology

* Thin sheet array of secondary emission “"channels” serve as a dynode -> the miniMCP

* Channel aspect ratio length/diameter only ~1-4 - an MCP but thinner-> only 1 e-collision

example: 20pm diameter "channel” is only 20-80 ym long

- single dynode stage: "miniMCP"

* the "miniMCP" are stacked/aligned forming continuous channelized dynodes.

* miniMCP Glass/SiO2: coated w/conducting secondary emission(SE) films -> PMT dynodes -
- few nm thick oxide layer formed on thin (~1-2 pym) metal films (CuBe-O or Al,03).
- Metal oxides are stable and survive GigaRad electron bombardment in PMT

- No need for controlled conductivity channels

- Dielectric Strength glass/silica 210V/pm. 10~30um insulation miniMCP dynode sheets:
- 100-300V applied between adjacent "miniMCP" dynodes

* Each dynode sheet has a side tab connection to a dynode voltage (see figures following)
- No need for vacuum-air pins

* miniMCP sheet dynode stages stacked/aligned

- confined channels from the top to the bottom of the dynode stack like an MCP
- but without a significant resistive load.

- electron cloud cannot diffuse sideways: B-field & timing like an MCP
- A 10 "dynode” miniMCP stack < 3mm thick.

* The bonded stack is the vacuum “envelope”; no glass-metal vacuum pins needed (see figs)
We call this a yPM or more generally MCDM (MultiChannelDynodeMultipier).



The yPM or MCDM:

. B ~2T - like MCP-PMT

- individual dynode power -> little cooling - >

- densely packed systems

- particle flow and high n calorimeters

- remote applications like satellites.

- 300 MHz counting rate (1>3.5: ~108 p/cm2/s)
Micromachined yPM/MCDM Prototype

Dynode Stack Stack on Header

Epoxy to fasten
stack peeces

Epoxy to mount
stack to header

Eeader

Cootact pads



Electron trajectory
“teacup” dynode
miniMCP’s
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Photecathode
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Electron trajectories for an inverted pyramidal dynode miniMCP
structure with applied potentials as shown. The structure has 8
dynodes, 2 focusing grids and a planar common anode.
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- Truncated Pyramidal dynode/miniMCP
- formed naturally by patterned simple KOH Etch Si(111)




Form & Fit test MicroPMT

Pixels/Channels ~1 mm diameter
Gain: 2.5-4 per stage (at present: Au:Cs surfaces)

Future: 50 um on centers easy — multi-anode would require
bump-bond vacuum feedthrough.




HPMT Processing

Metal Flux Direction; 50 um penetration

Dynode Metalization

Quartz boated loaded with multiple parts
prior to oxidation and SEM activation.



Ceramic yPMT body

UPMT stack ready
For e-beam tests
In SEM




Gain vs Voltage Measured on Two Stage Micro-PMT Dynode Chain
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Si Dynodes(pyramidal):

SiOxNy (x <0.001, y < 0.01), P-doped at ~10!°> t0 10!? / cm3, ~108 - 102 ohm-
cm resistive coating (N,P stochiometry), provided voltage gradients; strip
current ~80pA x 100V ; § ~2-3

SiO2 Dynodes(teacup):
10-20 nm Al203 on 500 nm Al film; & ~ 1.6-4.9



8-Stage Channelized Microdynode PMT Prototype

Window with JCC
phetocathade dynade sack
WMetal sebe ‘-'" Swrfece moust
body lemds
Ceramic buse



GLASS 3D Printing
A recent enabling breakthrough




Novel PhotoDetector Geometries

* PMT Stripes-photocathode 3mmx300mm
- Matched to scintillator, quartz sheets

» Pixel Arrays - no cross-talk/channelized
- Direct connection to ribbons, bundles

- “Wafer” PMT

* Ultra-Compact

+ High-B(?)



Quartz MicroMachining
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Low Noise Single Fiber Optic Receiver
-Continuous S-dynode, 200 ym fiber input

- Gain ~22,000 at ~IKV

Rate capability relatively modest




Glass Substrate

Glass Substrate \

Photocaihgge
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'D/ynode Contact Pads

Anode

~ Anode Contact

Photocathode Contact



Tiled Arrays - mMachined Dynodes

for Large PMT

10mm

11mm

10mm

100 micron gap

12" diameter detector array

glass window

4mm

[Ty et Ty (i £

3mm

1mm anode plate micro dynode or micro channel plate




Extra Slides Follow:

- High SE Dynode Materials for MCDM/uPM

- Novel micromachined APD & SiPM



Towards a high performance MEMS PMT
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Flow through CVD SE coatings remarkably uniform — ALD preferred



Diamond Secondary Yields
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High secondary yields -> 10% single p.e. resolution
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MCP/PMT Diamond SE Films
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« CVD Polycrystalline Diamond-resistivity 0.1<p< 108 Q-cm

* Pseudo-Lattice Match to Si

e Deposited by CH,/H, decomposition 10 Torr




APD: Compensated Doping -> Geometry
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1. High E-field Region,10°-10¢ times higher than Drift Region; and
2. sufficiently long for many ionizing collisions

High E-Field by higher resistance — via compensated doping.
The doping also results in lower energy interbands that generate more

thermal noise.



Toy Model: APD high field by Geometry!
* Analogy to Drift Chamber or GEM/
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Nanomachined Geometric APD

photons

p+

versed bias

cathode

3D-Electric Field Enhancement ~ Ratio of Areas Electrode/Neck
example: 1 micron wide pixel requires neck < 30 nm diameter

Control: Length, Size, Shape of high E field by geometry(+ Doping?)

Volume of Si reduced by more than x10 — less thermal noise....



Towards a GAPD Pixel Array




G-AP]D  CONTROL:

-Length of High field

region

-E-field

size/shape/taper
srod /n cathode -Size of E

Benefits:

| a) Less Noise:
- Lower interband
Doping
* Less high field Si
volume
(x 100-1000
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Towards a Geometric APD
leverage field emitter tips

Standard Monotonous Patterned Nanomachining:
» Controlled isotropic chemical etch
» Anisotropic electrochemical etch
* Photoelectrochemical etch
- Others......
~Analogous to “Field Emitting” back into silicon



Single Pixel Tests

- Tips from STM/AFM manufacturers!

* Modify tips (and lever) to suit (thin top Si)

» Insulate or strip-off insulation, deposit transparent electrode/s
- Use AFM/STM to assemble to the opposite doped Si



Single Pixel Tests

- p-Type AFM tip, ~50 micron base x ~250 ym long,
insulated ~20 nm Si3N4 except tip, metal annulus contact
- Tip placed by AFM to the surface of polished thin
n-type Si wafer, metal ohmic back connector.
- Direct/Anodic bond - few s HV voltage pulse.
- Reverse Bias, intensity I~400,000+/-10% green
photons/s 40 micron core optical fiber on back annulus.

- 40 V, 6>200, assuming QE~50%.

- 30-80 V & I->3I: Gain ~ linear within 20%
- 90~110 V, draws large current, Geigering.
- >110 V failed (Heating? Electromigration?)



Tube & PC Processing

From left.: monochrometer, Kelvin probe,
photoemission, sample introduction, sealing,
and photocathode transfer.



Schematic of SE Emission Calorimeter Module

film bias resistor chain 10 mil HY insulator (polymer)
HY connector / signal (fenale) -optional for stacking
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2 silicon micro channel plates

Box ~ Size of Lab-Note Book with HV, Ground & Signal



