Theia: Recent developments in water-based liquid scintillator Morgan Askins, for the Theia Collaboration

Theia Detector Concept

- \rightarrow 25 to 100 kt total mass
- → Variable target material (focus on Cherenkov / Scintillation separation)
- \rightarrow Up to 90% photocoverage
- → Advanced photon detection

Fits within a DUNE-like cavern

THEIA100

Target Physics

Broad physics program, split into multiple phases based on detector configuration and target material.

Phase	Primary Physics Goals	Detector capabilities	
I	Long-baseline oscillations ⁸ B flux Supernova burst, DSNB	High-precision ring imaging	
II	Long-baseline oscillations ⁸ B MSW transition CNO, <i>pep</i> solar Reactor and geo $\bar{\nu}$ Supernova burst ($\bar{\nu}_e$ and ν_e), DSNB (ν_e and $\bar{\nu}_e$)	Low threshold Cherenkov/scintillation separation High light yield	
III	$\begin{array}{l} 0\nu\beta\beta \\ ^{8}\mathrm{B}\ \mathrm{MSW}\ \mathrm{transition} \\ \mathrm{Reactor\ and\ geo}\ \bar{\nu} \\ \mathrm{Supernova\ burst\ and\ DSNB\ }(\bar{\nu}_{e}) \end{array}$	Low threshold Cherenkov/scintillation separation High light yield	

Configuration options

Low-yield WbLS Low photosensor coverage Fast timing

High-yield WbLS or slow LS Potential ⁷Li loading High photosensor coverage Potential dichroicon deployment

Inner vessel with LAB+PPO+isotope High photosensor coverage Potential dichroicon deployment

Combining Cherenkov and Scintillation light

Cherenkov

- → Preserves particle direction
- → Prompt timing with respect to interaction
- → Cut-off energy (Cherenkov Threshold)

Scintillation

- → High light-yield (energy resolution)
- → Isotropic emission

Water-based Liquid Scintillator

→ Aim to combine the unique aspects of these two signals to extend detector capabilities

Water-based Liquid Scintillator

- → Increased light-yield, compared with pure water, provides significant gains in position and energy resolution.
- → Separation of the Cherenkov and Scintillation signal has potential for particle identification.
- → Longer optical attenuation (compared with scintillator) scales to larger detector designs.

Advances in fast photodetectors and chromatic separation can be used to distinguish the two signals. *Figure showing the hit time residuals for 10% WbLS in*

Figure showing the a 50kt detector.

Nucl. Instrum. Meth. A **660**, 51 J. Phys. G **43**, 093001 Phys. Rev. D **103**, 052004

Optical Attenuation and Scattering

Paramount to the performance and scaling of WbLS are the overall optical properties. Long water-like attenuation is needed to scale to large detector masses, while scattering degrades the timing and separation of the Cherenkov and Scintillation components.

UC Davis: Robert Svoboda, Leon Pickard, Vincent Fischer, Tianqi Zhang, and Julie He

- \rightarrow SAMD is a 7.5m tall, 1in diameter, attenuation arm.
- Rayleigh scattering of WbLS cocktails.
- → Consists of seven H12690 PMTs.
 - the attenuation coefficent
 - scattering

→ 4 lasers installed (420, 450, 488, and 520 nm) \rightarrow Final stages of comissioning underway

Scattering and attenuation measurement device (SAMD) at UC Davis

→ Designed to measure wavelength-dependent attenuation and

One at the top and bottom of the arm to determine 5 sideways facing PMTs to measure Rayleigh

Nanofiltration of WbLS at UC Davis

- → Purification of WbLS is required to maintain optical transparency.
- → Water and ionic compounds from liquid scintillator must be separated before deionization.
- → Nanofiltration is a **membrane filtration** process that can potentially be used for this purpose.
- → System must separate water and liquid scintillator, with a flow rate suitable for Theia sized detectors, all while not damaging the liquid scintillator.

Proton Light-yield: LBL

Measurement of the proton light-yield in WbLS is critical for particle identification and background rejection.

- → Identification of proton ES events from Supernovae
- → Reject fast neutron backgrounds for anti-neutrino detection.

"Double time-of-flight" method

- → Pulsed deuteron beam breakup on Be target
- → PID-capable "post-scatter" detectors
- \rightarrow Collaboration with **B**ay Area Neutron Group

Brown et al, Jour. Appl. Phys. 124, 045101 (2018)

Two measure of neutron energy

- light

Protons excited by n-p scattering internal to measurement sample

 \rightarrow Before and after scattering → Determination of energy deposited

Charge collected in PMT used as proxy for

Proton Light-yield: Munich, Mainz, Berkeley

→ BELINA: Narrow energy neutron beam at LNL Padua, Italy → Measurements of low energy proton quenching and time profile \rightarrow Several setups for each purpose deployed → Derive particle ID from time profile and Scintillation/Cherenkov light ratio

- \bullet

Using RAT-PAC for simulation and analysis Account for multi-scatter events (~65% of events) • Tune Microphysical parameters

CHESS: Cherenkov / Scintillation Seperation

- → Constructed from a grid of 1in fast PMTs to geometrically isolate Cherenkov light.
- → Measured WbLS and pure LAB timing profiles and light-yields.
- → Future upgrades include integration with other potential optical detector upgrades.

WbLS	1%	5%	10%
$ au_r[ext{ns}]$	0.00 ± 0.06	0.06 ± 0.11	0.13 ± 0.12
$ au_1[ext{ns}]$	2.25 ± 0.15	2.35 ± 0.13	2.70 ± 0.16
$ au_2[ext{ns}]$	15.10 ± 7.47	23.21 ± 3.28	27.05 ± 4.20
R_1	0.96 ± 0.01	0.94 ± 0.01	0.94 ± 0.01

Measurement of WbLS timing profile with a rise time plus two exponential fit.

Phys. Rev. C **95**, 055801 (2017) Eur. Phys. J. C **80**, 867 (2020)

Eur. Phys. J. C **77**, 811 (2020)

Scintillation time profile for various WbLS loadings comparing MC to data in CHESS.

Time Response from X-ray Excitation

- → Samples of 1%, 5%, and 10% WbLS prepared with 90g/L PPO in LAB.
- → X-rays injected perpendicular to spectrometer.
- → Measurements of emission wavelength, timing profiles, and relative light-yield are collected for each sample.

Mater. Adv. **1**, 71 (2020)

WbLS Samples	τ_{rise} [ns]	$ au_1$ [ns]	<i>f</i> ₁ [%]	τ_2 [ns]	f ₂ [%]	τ_3 [ns]	f ₃ [%]
1% LAB/PPO	0.23 ± 0.06	2.00 ± 0.03	87	12 ± 1			
5% LAB/PPO	0.23 ± 0.04	2.00 ± 0.02	88	10.0 ± 0.6	6.6	106 ± 6	5.7
10% LAB/PPO	0.29 ± 0.03	$\boxed{2.22\pm0.03}$	89	10.7 ± 0.9	6.0	102 ± 9	5.5

Summary

- → Demonstrations of the WbLS timing profiles and relative light-yields (Eur. Phys. J. C 80, 867 – Mater. Adv. 1, 71) show higher than expected WbLS light-yield and faster timing profiles. -> Proton light-yield measurements will provide the basis for particle identification for background rejection in low-energy analysis such as reactor / geo anti-neutrinos as well as neutrino-proton elastic scattering.
- \rightarrow Cherenkov / scintillation separation in WbLS has been shown (Phys. Rev. D 103, 052004) to provide increased sensitivity to CNO neutrinos.
- → Optical attenuation measurements (SAMD) and purification systems are needed to scale Theia to the 100 kt scale.

See other talks for details on other supporting technologies

→ Previous talk by Benjamin Land on chromatic separation → Large Area Picosecond Photo-detectors (LAPPDs) by Emrah Tiras tomorrow

Backup

Theia Physics Reach

Primary Physics Goal	Reach
Long-baseline oscillations	$> 5\sigma$ for 30% of δ_{CP} values
Supernova burst	$< 1(2)^{\circ}$ pointing accuracy
	20,000 (5,000) events
DSNB	5σ discovery
CNO neutrino flux	< 5 (10)%
Reactor neutrino detection	2000 events
Geo neutrino detection	2650 events
NLDBD	$T_{1/2} > 1.1 \times 10^{28} \text{ yr}$
Nucleon decay $p \to \overline{\nu} K^+$	$T > 3.80 \times 10^{34} \text{ yr} (90\% \text{ CL})$

Exposure / assumptions

524 kt-MW-yr 100(25)-kt detector, 10kpc

125 kton-yr 300 (62.5) kton-yr 100 kton-yr 100 kton-yr 211 ton-yr ¹³⁰Te 800 kton-yr

Long baseline oscillations

- \rightarrow Oscillation parameter sensitivity for Theia at SURF.
- → 17 kt (fiducial volume) Theia compliments DUNE results, providing an independent crosscheck of the extracted oscillation parameter values.
- \rightarrow Better than 3 σ sensitivity to CP violation in 100 kt.
- \rightarrow Benefits from improvements in ring fitting from T2K (using fiTQun).

Solar neutrinos

→ Event direction provides radioactive background discrimination \rightarrow 2D binned maximum likelihood fit in reconstructed and energy event direction.

Fractional uncertainty on the CNO normalization as a function of angular resolution and WbLS scintillator fraction for Theia-100.

Supernova neutrinos

- → High-statistics (from target mass) combined with a low energy-threshold.
- → Directional signature for ES events, and tagged coincidence for IBD to distinguish ν_e and $\bar{\nu}_e$ events.
- → Supernova pointing (by rejecting IBD to get pure ES events).

Table 5 Event rates expected in 100 kt of WbLS (10% scintillator) for an SN at 10 kpc distance (GVKM model [109] and SNOwGLoBES). We list inverse beta decays (IBDs), elastic scattering off electrons (ES) as well as charged-current $(\nu_e O, \bar{\nu}_e O)$ and neutral-current (NCO) interactions on oxygen. Comparatively small event rates on carbon are not listed.

Reaction	1	Rate
(IBD)	$\bar{\nu}_e + p \rightarrow n + e^+$	19,800
(ES)	$\nu + e \rightarrow e + \nu$	960
$(\nu_e O)$	${}^{16}{ m O}(\nu_e,e^-){}^{16}{ m F}$	340
$(\bar{\nu}_e O)$	${}^{16}{ m O}(\bar{\nu}_e,e^+){}^{16}{ m N}$	440
(NCO)	$^{16}O(\nu,\nu)^{16}O^{*}$	1,100

Diffuse supernova neutrino background

- → Particle identification would significantly reduce cosmogenic neutron backgrounds which IBD signals.
- → Ring counting can discriminate one-ring IBD positron events (ignoring the 511 keV γs) from multi-ring atmospheric neutral current events.
- → Rates expected at 0.1 per year per kiloton
- → 5σ discovery of SDNB in less that 1 year (for 100kt target)

Geo/reactor antineutrinos

→ Higher light-yield and energy threshold provides lower energy threshold on primary positron as well as high efficiency for the 2.2 MeV neutron capture on hydrogen.

→ 26.5 geoneutrino interactions per kT-year at SURF.

Neutrinoless double beta decay

→ Achieved using a full liquid scintillator interior vessel (kamLAND-like)

→ Either 3% enriched Xe or 5% natural Te loaded (in an assumed 8m baloon)

Source	Target level	Expected	$\mathbf{Events}/\mathbf{ROI} \cdot \mathbf{y}$	
		$\mathbf{events}/\mathbf{y}$	$5\%\ ^{nat}{\rm Te}$	3% ^{enr} Xe
¹⁰ C		500	2.5	2.5
⁸ B neutrinos (flux from 124)		2950	13.8	13.8
¹³⁰ I (Te target)		$155 (30 \text{ from } {}^8\text{B})$	8.3	5
¹³⁶ Cs (^{enr} Xe target)		478 (68 from ⁸ B)	-	0.06
$2\nu\beta\beta$ (Te, T _{1/2} from 125)		1.2×10^{8}	8.0	2
$2\nu\beta\beta$ (enrXe, T _{1/2} from 126.127)		7.1×10^{7}	=	- 3.8
Liquid scintillator	$^{214}{ m Bi:}~10^{-17}~{ m g}_U/{ m g}$	7300	0.4	0.4
	²⁰⁸ Tl: 10^{-17} g _{Th} /g	870	2 2	2
Balloon	$^{214}\text{Bi:} < 10^{-12} \text{ g}_{II}/\text{g}$	$<\!\!2 \times 10^{5}$	3.0	3.4
	208 Tl: $< 10^{-12} \text{ g}_{Th}/\text{g}$	$<\!3 \times 10^{4}$	0.03	0.02

Neutrinoless double beta decay

Energy spectra near the $0\nu\beta\beta$ endpoint for events within a 7m fiducial volume for 10 years data taking.

Nucleon Decay

p
ightarrow
u K-like modes would benefit from chromatic sorting, as the event signature is a 3-fold coincidence with the first being a 12ns kaon decay.

Invisible neutron decay benefits from a high branching ratio to a 6 MeV γ from oxygen.