Theia: Recent developments in water-based liquid scintillator

Morgan Askins, for the Theia Collaboration
Theia Detector Concept

→ 25 to 100 kt total mass
→ Variable target material (focus on Cherenkov / Scintillation separation)
→ Up to 90% photocoverage
→ Advanced photon detection

Fits within a DUNE-like cavern
Broad physics program, split into multiple phases based on detector configuration and target material.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Primary Physics Goals</th>
<th>Detector capabilities</th>
<th>Configuration options</th>
</tr>
</thead>
</table>
| I | Long-baseline oscillations
8B flux
Supernova burst, DSNB | High-precision ring imaging | Low-yield WbLS
Low photosensor coverage
Fast timing |
| II | Long-baseline oscillations
8B MSW transition
CNO, pep solar
Reactor and geo $\bar{\nu}$
Supernova burst ($\bar{\nu}_e$ and ν_e),
DSNB (ν_e and $\bar{\nu}_e$) | Low threshold
Cherenkov/scintillation separation
High light yield | High-yield WbLS or slow LS
Potential 7Li loading
High photosensor coverage
Potential dichroicon deployment |
| III | 0ν/3β
8B MSW transition
Reactor and geo $\bar{\nu}$
Supernova burst and DSNB ($\bar{\nu}_e$) | Low threshold
Cherenkov/scintillation separation
High light yield | Inner vessel with LAB+PPO+isotope
High photosensor coverage
Potential dichroicon deployment |
Combining Cherenkov and Scintillation light

Cherenkov

- Preserves particle direction
- Prompt timing with respect to interaction
- Cut-off energy (Cherenkov Threshold)

Scintillation

- High light-yield (energy resolution)
- Isotropic emission

Water-based Liquid Scintillator

- Aim to combine the unique aspects of these two signals to extend detector capabilities
Water-based Liquid Scintillator

- Increased light-yield, compared with pure water, provides significant gains in position and energy resolution.
- Separation of the Cherenkov and Scintillation signal has potential for particle identification.
- Longer optical attenuation (compared with scintillator) scales to larger detector designs.

Advances in fast photodetectors and chromatic separation can be used to distinguish the two signals.

Figure showing the hit time residuals for 10% WbLS in a 50kt detector.

Nucl. Instrum. Meth. A 660, 51
J. Phys. G 43, 093001
Phys. Rev. D 103, 052004
Optical Attenuation and Scattering

Paramount to the performance and scaling of WbLS are the overall optical properties. Long water-like attenuation is needed to scale to large detector masses, while scattering degrades the timing and separation of the Cherenkov and Scintillation components.

Scattering and attenuation measurement device (SAMD) at UC Davis

→ SAMD is a 7.5m tall, 1in diameter, attenuation arm.
→ Designed to measure wavelength-dependent attenuation and Rayleigh scattering of WbLS cocktails.
→ Consists of seven H12690 PMTs.

- One at the top and bottom of the arm to determine the attenuation coefficient
- 5 sideways facing PMTs to measure Rayleigh scattering

→ 4 lasers installed (420, 450, 488, and 520 nm)
→ Final stages of commissioning underway
Purification of WbLS is required to maintain optical transparency.
Water and ionic compounds from liquid scintillator must be separated before deionization.
Nanofiltration is a **membrane filtration** process that can potentially be used for this purpose.
System must separate water and liquid scintillator, with a flow rate suitable for Theia sized detectors, all while not damaging the liquid scintillator.
Measurement of the proton light-yield in WbLS is critical for particle identification and background rejection.

- Identification of proton ES events from Supernovae
- Reject fast neutron backgrounds for anti-neutrino detection.

"Double time-of-flight" method

- Pulsed deuteron beam breakup on Be target
- PID-capable "post-scatter" detectors
- Collaboration with Bay Area Neutron Group

Protons excited by n-p scattering internal to measurement sample

Two measure of neutron energy

- Before and after scattering
- Determination of energy deposited

Charge collected in PMT used as proxy for light

BELINA: Narrow energy neutron beam at LNL Padua, Italy
Measurements of low energy proton quenching and time profile
Several setups for each purpose deployed
Derive particle ID from time profile and Scintillation/Cherenkov light ratio

- Using RAT-PAC for simulation and analysis
- Account for multi-scatter events (~65% of events)
 - Tune Microphysical parameters
CHESS: Cherenkov / Scintillation Separation

→ Constructed from a grid of 1in fast PMTs to geometrically isolate Cherenkov light.

→ Measured WbLS and pure LAB timing profiles and light-yields.

→ Future upgrades include integration with other potential optical detector upgrades.

<table>
<thead>
<tr>
<th>WbLS</th>
<th>1%</th>
<th>5%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1 [ns]</td>
<td>0.00 ± 0.06</td>
<td>0.06 ± 0.11</td>
<td>0.13 ± 0.12</td>
</tr>
<tr>
<td>τ_2 [ns]</td>
<td>2.25 ± 0.15</td>
<td>2.35 ± 0.13</td>
<td>2.70 ± 0.16</td>
</tr>
<tr>
<td>τ_2 [ns]</td>
<td>15.10 ± 7.47</td>
<td>23.21 ± 3.28</td>
<td>27.05 ± 4.20</td>
</tr>
<tr>
<td>R_1</td>
<td>0.96 ± 0.01</td>
<td>0.94 ± 0.01</td>
<td>0.94 ± 0.01</td>
</tr>
</tbody>
</table>

Measurement of WbLS timing profile with a rise time plus two exponential fit.

Scintillation time profile for various WbLS loadings comparing MC to data in CHESS.
→ Samples of 1%, 5%, and 10% WbLS prepared with 90g/L PPO in LAB.

→ X-rays injected perpendicular to spectrometer.

→ Measurements of emission wavelength, timing profiles, and relative light-yield are collected for each sample.

<table>
<thead>
<tr>
<th>WbLS Samples</th>
<th>τ_{rise} [ns]</th>
<th>τ_1 [ns]</th>
<th>f_1 [%]</th>
<th>τ_2 [ns]</th>
<th>f_2 [%]</th>
<th>τ_3 [ns]</th>
<th>f_3 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% LAB/PPO</td>
<td>0.23 ± 0.06</td>
<td>2.00 ± 0.03</td>
<td>87</td>
<td>12 ± 1</td>
<td>6.8</td>
<td>110 ± 10</td>
<td>6.2</td>
</tr>
<tr>
<td>5% LAB/PPO</td>
<td>0.23 ± 0.04</td>
<td>2.00 ± 0.02</td>
<td>88</td>
<td>10.0 ± 0.6</td>
<td>6.6</td>
<td>106 ± 6</td>
<td>5.7</td>
</tr>
<tr>
<td>10% LAB/PPO</td>
<td>0.29 ± 0.03</td>
<td>2.22 ± 0.03</td>
<td>89</td>
<td>10.7 ± 0.9</td>
<td>6.0</td>
<td>102 ± 9</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Proton light-yield measurements will provide the basis for particle identification for background rejection in low-energy analysis such as reactor / geo anti-neutrinos as well as neutrino–proton elastic scattering.

Cherenkov / scintillation separation in WbLS has been shown (Phys. Rev. D 103, 052004) to provide increased sensitivity to CNO neutrinos.

Optical attenuation measurements (SAMD) and purification systems are needed to scale Theia to the 100 kt scale.

See other talks for details on other supporting technologies

Previous talk by Benjamin Land on chromatic separation

Large Area Picosecond Photo-detectors (LAPPDs) by Emrah Tiras tomorrow
<table>
<thead>
<tr>
<th>Primary Physics Goal</th>
<th>Reach</th>
<th>Exposure / assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-baseline oscillations</td>
<td>$> 5\sigma$ for 30% of δ_{CP} values</td>
<td>524 kt-MW-yr</td>
</tr>
<tr>
<td>Supernova burst</td>
<td>$< 1(2)^\circ$ pointing accuracy $20,000$ (5,000) events</td>
<td>100(25)-kt detector, 10kpc</td>
</tr>
<tr>
<td>DSNB</td>
<td>5σ discovery</td>
<td>125 kton-yr</td>
</tr>
<tr>
<td>CNO neutrino flux</td>
<td>< 5 (10)%</td>
<td>300 (62.5) kton-yr</td>
</tr>
<tr>
<td>Reactor neutrino detection</td>
<td>2000 events</td>
<td>100 kton-yr</td>
</tr>
<tr>
<td>Geo neutrino detection</td>
<td>2650 events</td>
<td>100 kton-yr</td>
</tr>
<tr>
<td>NLDBD</td>
<td>$T_{1/2} > 1.1 \times 10^{28}$ yr</td>
<td>211 ton-yr 130Te</td>
</tr>
<tr>
<td>Nucleon decay $p \rightarrow \bar{\nu}K^+$</td>
<td>$T > 3.80 \times 10^{34}$ yr (90% CL)</td>
<td>800 kton-yr</td>
</tr>
</tbody>
</table>
→ Oscillation parameter sensitivity for Theia at SURF.
→ 17 kt (fiducial volume) Theia compliments DUNE results, providing an independent cross-check of the extracted oscillation parameter values.
→ Better than 3σ sensitivity to CP violation in 100 kt.
→ Benefits from improvements in ring fitting from T2K (using fiTQun).
Solar neutrinos

- Event direction provides radioactive background discrimination
- 2D binned maximum likelihood fit in reconstructed energy and event direction.

Fractional uncertainty on the CNO normalization as a function of angular resolution and WbLS scintillator fraction for Theia-100.

Energy spectrum of expected signals for a 25 kt, 5% WbLS Theia.

Additional solar neutrino studies include
- The 8B transition between 1 and 5 MeV
- pp and pep flux.
➔ High-statistics (from target mass) combined with a low energy-threshold.
➔ Directional signature for ES events, and tagged coincidence for IBD to distinguish ν_e and $\bar{\nu}_e$ events.
➔ Supernova pointing (by rejecting IBD to get pure ES events).

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(IBD) $\bar{\nu}_e + p \rightarrow n + e^+$</td>
<td>19,800</td>
</tr>
<tr>
<td>(ES) $\nu + e \rightarrow e + \nu$</td>
<td>960</td>
</tr>
<tr>
<td>$^{16}\text{O}(\nu_e, e^-)^{16}\text{F}$</td>
<td>340</td>
</tr>
<tr>
<td>$^{16}\text{O}(\bar{\nu}_e, e^+)^{16}\text{N}$</td>
<td>440</td>
</tr>
<tr>
<td>(NCO) $^{16}\text{O}(\nu, \nu)^{16}\text{O}^*$</td>
<td>1,100</td>
</tr>
</tbody>
</table>

Table 5 Event rates expected in 100 kt of WbLS (10% scintillator) for an SN at 10 kpc distance (GVKM model [109] and SNOwGLoBES). We list inverse beta decays (IBDs), elastic scattering off electrons (ES) as well as charged-current ($\nu_e\text{O}, \bar{\nu}_e\text{O}$) and neutral-current (NCO) interactions on oxygen. Comparatively small event rates on carbon are not listed.
Diffuse supernova neutrino background

→ Particle identification would significantly reduce cosmogenic neutron backgrounds which IBD signals.
→ Ring counting can discriminate one-ring IBD positron events (ignoring the 511 keV γs) from multi-ring atmospheric neutral current events.
→ Rates expected at 0.1 per year per kiloton
→ 5σ discovery of SDNB in less that 1 year (for 100kt target)
→ Higher light-yield and energy threshold provides lower energy threshold on primary positron as well as high efficiency for the 2.2 MeV neutron capture on hydrogen.

→ 26.5 geoneutrino interactions per kT-year at SURF.
Neutrinoless double beta decay

- Achieved using a full liquid scintillator interior vessel (kamLAND-like)
- Either 3% enriched Xe or 5% natural Te loaded (in an assumed 8m baloon)

<table>
<thead>
<tr>
<th>Source</th>
<th>Target level</th>
<th>Expected events/y</th>
<th>Events/ROI-y 5% nat Te</th>
<th>Events/ROI-y 3% enr Xe</th>
</tr>
</thead>
<tbody>
<tr>
<td>10C</td>
<td></td>
<td>500</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>8B neutrinos</td>
<td></td>
<td>2950</td>
<td>13.8</td>
<td>13.8</td>
</tr>
<tr>
<td>136I (Te target)</td>
<td></td>
<td>155 (30 from 8B)</td>
<td>8.3</td>
<td>-</td>
</tr>
<tr>
<td>136Cs (enr Xe target)</td>
<td></td>
<td>478 (68 from 8B)</td>
<td>-</td>
<td>0.06</td>
</tr>
</tbody>
</table>
| $^{2
u}\beta\beta$ (Te, $T_{1/2}$ from [125]) | | 1.2×10^{8} | 8.0 | - |
| $^{2
u}\beta\beta$ (enr Xe, $T_{1/2}$ from [126,127]) | | 7.1×10^{7} | - | 3.8 |
| Liquid scintillator | | 7300 | 0.4 | 0.4 | |
| Balloon | | 214Bi: $<10^{-12}$ gT$_{ch}$/g | 3.0 | 3.4 |
| | | 208Th: $<10^{-12}$ gT$_{ch}$/g | $<2\times10^{5}$ | 0.03 | 0.02 |

![Graph showing neutrinoless double beta decay results](image)
Neutrinoless double beta decay

Energy spectra near the $0\nu\beta\beta$ endpoint for events within a 7m fiducial volume for 10 years data taking.
Nucleon Decay

$p \rightarrow \nu K$-like modes would benefit from chromatic sorting, as the event signature is a 3-fold coincidence with the first being a 12-ns kaon decay.

Invisible neutron decay benefits from a high branching ratio to a 6 MeV γ from oxygen.