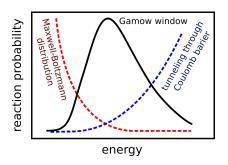
Toward studying photonuclear reactions with active-target TPC

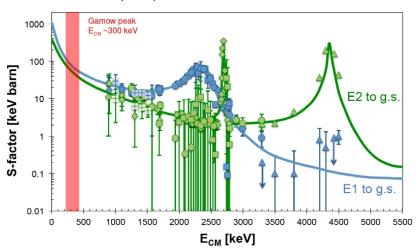
Mateusz Fila¹, M. Ćwiok¹, W. Dominik¹, Z. Janas¹, A. Kalinowski¹, M. Kuich¹, C. Mazzocchi¹, M. Zaremba¹, M. Gai²

¹University of Warsaw, Poland ²University of Connecticut, USA


19.03.2021

CPAD Instrumentation Frontier Workshop 2021

Nuclear astrophysics


Stellar nuclear reactions occur within narrow energy windows

The $^{12}\text{C}/^{16}\text{O}$ ratio depends on the relative rates of the reactions:

$$3\alpha \rightarrow^{12} C$$
 $^{12}C(\alpha,\gamma)^{16}O$

$^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ reaction S-factors

Nacre II, Y. Xu et al., Nuclear Physics A 918 (2013)

$$S(E) = \frac{E}{\exp(-2\pi\eta)}\sigma(E), \quad \eta = \frac{Z_1Z_2\alpha}{\beta}$$

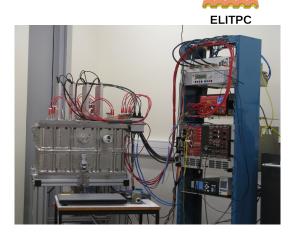
The detailed balance principle:

$$^{12}\text{C}(\alpha,\gamma)^{16}\text{O} \rightleftharpoons {}^{16}\text{O}(\gamma,\alpha)^{12}\text{C}$$

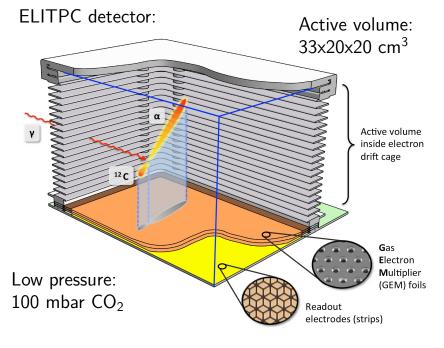
$$\sigma_{lpha\gamma} = \sigma_{\gammalpha} rac{2J_{ extsf{O}}+1}{\left(2J_{lpha}+1
ight)\left(2J_{ extsf{C}}+1
ight)} rac{E_{\gamma}^2}{E_{ extsf{CM}}} rac{1}{\mu_{lpha extsf{C}}c^2}$$

$$\sigma_{lpha,\gamma}(1 ext{ MeV}) pprox 50 ext{ pb} \ \sigma_{\gamma,lpha}(1 ext{ MeV}) pprox 2 ext{ nb}$$

$$\sigma_{pp o H^0}(13 \text{ TeV}) pprox 60 \text{ pb}$$

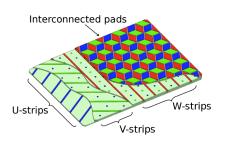

Gamma-beam facilities:

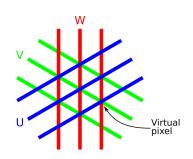
- HI γ S (**H**igh Intensity **G**amma-Ray **S**ource, USA) Intensity $10^7 \gamma/s$, resolution 10% FWHM
- NewSUBARU (Japan) Intensity $10^5 \gamma/s$, resolution 1.2% FWHM
- ELI-NP (Extreme Light Infrastructure Nuclear Physics, Romania, under construction) Intensity $10^9 \gamma/\text{s}$, resolution 0.5% RMS


ELITPC detector: active-target TPC with electronic readout

Goals:

- study nuclear astrophysics relevant (γ, α) (γ, p) reactions,
- measure energy & angular distributions of low-energy charged products,
- reduce uncertainty of $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ from 40-80% to 10%.

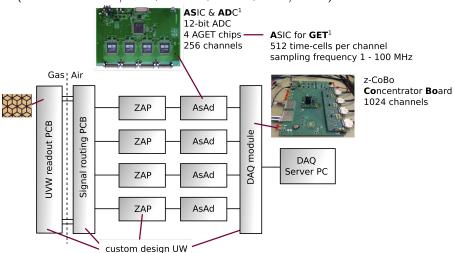

Model detector



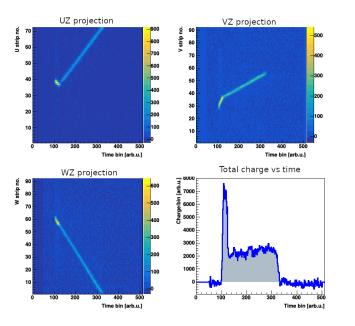
Strip readout

XY plane: ~ 1000 channels (U,V,W)

Z axis: drift time



M. Ćwiok, Acta Phys.Pol. B 47 (2016)

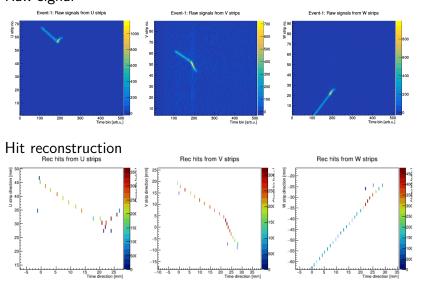

DAQ system

Generic Electronics for TPCs

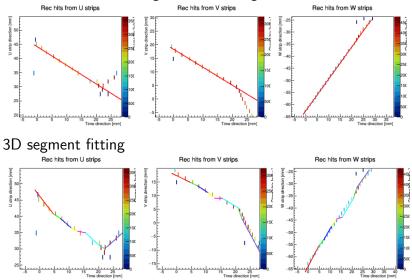
(GET collab. CEA/IRFU, CENBG, GANIL, MSU/NSCL)

Example event from test detector

256 channels


active volume $10 \times 10 \times 20 \text{ cm}^3$

 $100 \text{ mbar } CO_2$


n beam

3MV Tandem accelerator IFIN-HH, Romania

Event reconstruction — ongoing development Raw signal

Event reconstruction — ongoing development classic line detection algorithm→ Hough transform

Summary

- The availability of high intensity γ -ray beams present new opportunity for studying astrophysics relevant nuclear reactions.
- An active-target TPC with electronic readout suited for studying photonuclear reactions is developed at the University of Warsaw. The model detector is fully operational.
- $^{16}\text{O}(\gamma,\alpha)^{12}\text{C}$ disintegration reactions will be studied in upcoming experiments with γ -ray beams of HI γ S and ELI-NP.

Acknowledgement:

Scientific work supported by the Polish Ministry of Science and Higher Education from the funds for years 2019-2021 dedicated to implement the international co-funded project no. 4087/ELI-NP/2018/0, by University of Connecticut under the Collaborative Research Contract no. UConn-LNS_UW/7/2018 and by the National Science Centre, Poland, under Contract no. UMO-2019/33/B/ST2/02176.