Status and prospects of TPC module and prototype R&D for CEPC

Huirong Qi

ZhiYang Yuan, Yiming Cai, Yue Chang, Jian Zhang, Zhi Deng Yulan Li, Hui Gong, Wei Liu, Hongyu Zhang, Ye Wu

Institute of High Energy Physics, CAS

Tsinghua University

CPAD 2021, March, 18, 2021

Outline

- Motivation
- TPC module R&D
- TPC prototype R&D
- **FEE ASIC R&D**
- Summary

Motivation

projection steetons and m

end-plate

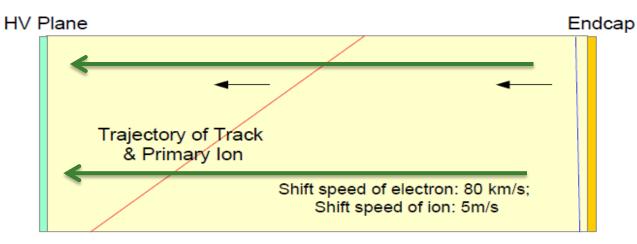
TPC critical R&D for Z

- TPC can provide large-volume high-precision 3D track measurement with stringent material budget
- In order to achieve the high spatial resolution (<100um in all drift length), small pads (e.g.1mm×6mm) are needed, resulting ~1million channels of readout electronics
- Need low power consumption readout electronics working at continuous mode
- Need effectively reduce ions

5	Momentum resolution (B=3.5T)	$\delta(^{1}/p_{t}\approx 10^{-4}/GeV/c)$
es)	δ_{point} in $r\Phi$	<100 µm
	δ_{point} in rz	0.4-1.4 mm
	Inner radius	329 mm
	Outer radius	1800 mm
	Drift length	2350 mm
	TPC material budget	$\approx 0.05 X_0$ incl. field cage $< 0.25 X_0$ for readout endcap
	Pad pitch/no. padrows	$\approx 1 \text{ mm} \times (4 \sim 10 \text{ mm}) / \approx 200$
	2-hit resolution	$\approx 2 \text{ mm}$
	Efficiency	>97% for TPC only ($p_t > 1GeV$) >99% all tracking ($p_t > 1GeV$)

CEPC High Luminosity Parameters after CDR

	tt	Higgs	W	2	5
Number of IPs	2	2	2		2
Energy (GeV)	180	120	80	45	.5
Circumference (km)	100	100	100	10	00
SR loss/turn (GeV)	8.53	1.73	0.33	0.0	36
Half crossing angle (mrad)	16.5	16.5	16.5	16	5.5
Piwinski angle	1.16	4.87	9.12	24	.9
N _e /bunch (10 ¹⁰)	20.1	16.3	11.6	15	.2
Bunch number (bunch spacing)	37 (4.45µs)	214 (0.7us)	1588 (0.2µs)	3816 (86ns)	11498 (26n
Beam current (mA)	3.5	16.8	88.5	278.8	839.9
SR power /beam (MW)	30	30	30	10	30
Bending radius (km)	10.7	10.7	10.7	10	.7
Phase advance of arc cell	90°/90°	90°/90°	90°/90°	60°/60°	
Momentum compaction (10-5)	0.73	0.73	0.73	1.4	48
$\beta_{IP} x/y (m)$	1.0/0.0027	0.33/0.001	0.33/0.001	0.15/0.001 0.27/0.00135	
Emittance x/y (nm)	1.45/0.0047	0.68/0.0014	0.28/0.00084		
Transverse σ_{IP} (um)	37.9/0.11	15.0/0.037	9.6/0.029	6.36/	0.037
$\xi_{\chi}^{\prime}/\xi_{\chi}^{\prime}/IP$	0.076/0.106	0.018/0.115	0.014/0.13	0.0046	/0.131
$V_{RF}(GV)$	9.52	2.27	0.47	0.	1
f _{RF} (MHz) (harmonic)	650 (216816)	650 (216816)	650 (216816)	650 (2	16816)
Nature bunch length σ_r (mm)	2.23	2.25	2.4	2.1	75
Bunch length σ_z (mm)	2.66	4.42	5.3	9.	6
HOM power/cavity (kw)	0.45 (5cell)	0.48 (2cell)	0.79 (2cell)	2.0 (2cell)	3.02 (1cel
Energy spread (%)	0.17	0.19	0.11	0.	12
Energy acceptance requirement (DA) (%)	2.0	1.7	1.2	1.	3
Energy acceptance by RF (%)	2.01	2.5	1.02	1.4	18
Lifetime (nour)	0.59	0.35	1.3	1.7	1.1
$L_{max}/\text{IP} (10^{34} \text{cm}^{-2} \text{s}^{-1})$	0.5	5.0	18.7	35.0	105.5


Physics motivation

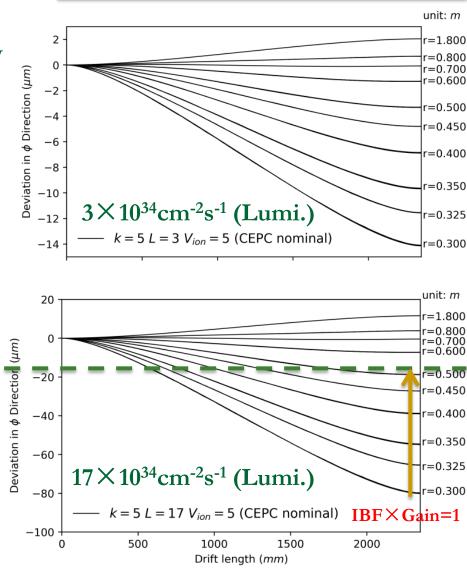
TPC limitations for Z

- Ions back flow in chamber
- Calibration and alignmensf^C Low power consumption fier ASIC chip

odated Parameters	s of Collider Ring	since CDR

	Higgs		Z (2T)	
	CDR	Updated	CDR	Updated
Beam energy (GeV)	120		45.5	
Synchrotron radiation loss/turn (GeV)	1.73	1.68	0.036	
Piwinski angle	2.58	3.78	23.8	33
Number of particles/bunch N _e (10 ¹⁰)	15.0	17	8.0	15
Bunch number (bunch spacing)	242 (0.68µs)	218 (0.68µs)	12000	15000
Beam current (mA)	17.4	17.8	461.0	1081.4
Synchrotron radiation power /beam (MW)	30		16.5	38.6
Cell number/cavity	2		2	1
$β$ function at IP $β_x^*$ / $β_y^*$ (m)	0.36/0.0015	0.33/0.001	0.2/0.001	
Emittance ε _x /ε _y (nm)	1.21/0.0031	0.89/0.0018	0.18/0.0016	
Beam size at IP σ _x /σ _y (μm)	20.9/0.068	17.1/0.042	6.0/0.04	
Bunch length σ _z (mm)	3.26	3.93	8.5	11.8
Lifetime (hour)	0.67	0.22	2.1	1.8
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	5.2	32.1	101.6
Luminosity increase factor: × 1.8			×	3.2

IP


TPC detector concept

IBF simulation study at Z

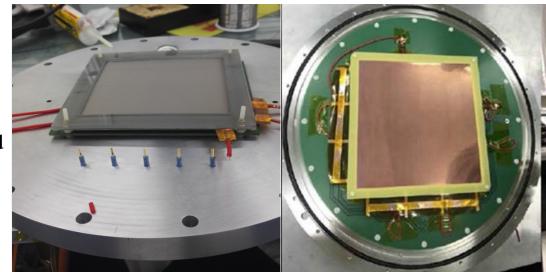
Goal:

- Operate TPC at higher luminosity
- No Gating options
- **Gimulation**
 - **IBF**×Gain default as the factor of 5
 - 9 thousand Z to qq events
 - 60 million hits are generated in sample
 - □ Average hit density: 6 hits/mm²
 - Voxel size: $1mm \times 6mm \times 2mm$
 - □ Average voxel occupancy: 1.33 × 10⁻⁸
 - □ Voxel occupancy at TPC inner most layer: ~2×10⁻⁷
 - Validated with 3 ions disks
 - Simulation of the multi ions disk in chamber under the continuous beam structure
 - Without the charge of the beam-beam effects in TPC

DOI: 10.1142/S0217751X19400165, 2019 DOI: 10.1088/1748-0221/12/07/P07005, 2017

Deviation with the different TPC radius - 5 -

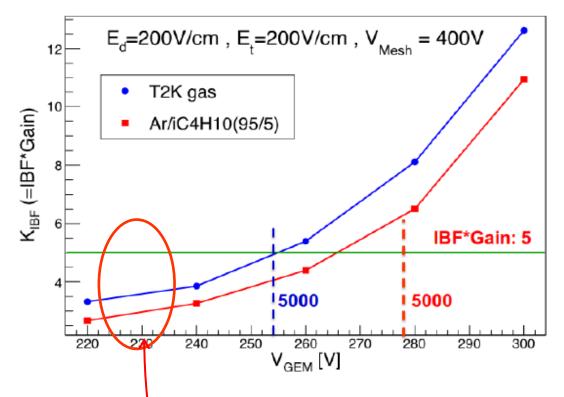
TPC module R&D


TPC detector module@ IHEP

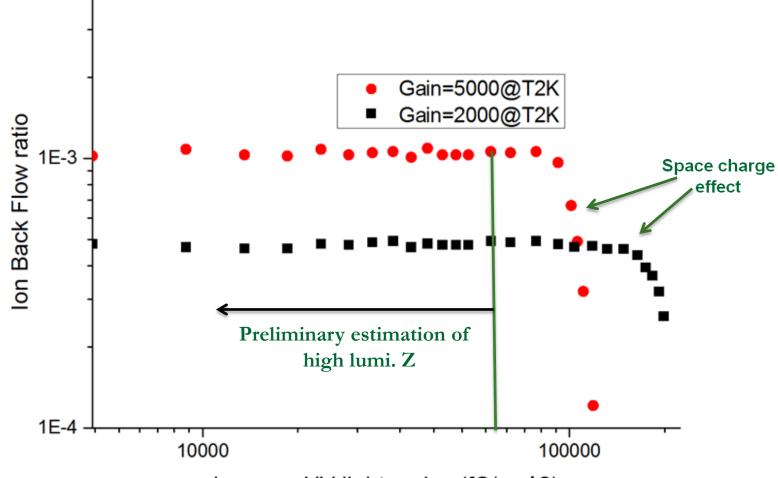
Study with GEM-MM module

- New assembled module
- Active area: 100mm × 100mm
- **X-tube ray and 55Fe source**
- Bulk-Micromegas assembled from Saclay
- Standard GEM from CERN
- Avalanche gap of MM:128μm
- Transfer gap: 2mm
- Drift length:2mm~200mm
- pA current meter: Keithley 6517B
- Current recording: Auto-record interface by LabView
- **Standard Mesh: 400LPI**
- High mesh: 508 LPI
- Pixel option for the consideration in 2020

DOI: 10.1088/1748-0221/12/04/P0401 JINST, 2017.4
DOI: 10.1088/1674-1137/41/5/056003, CPC,2016.11
DOI: 10.7498/aps.66.072901Acta Phys. Sin. 2017,7
DOI: 10.1142/S2010194518601217 (SCI) 2018
DOI: 10.1088/1748-0221/13/04/T04008 (SCI) 2018
DOI: 10.1007/978-981-13-1316-5_20 (SCI) 2018



GEM-MM detector cathode


GEM+MM

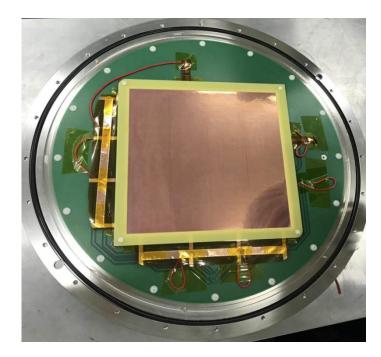
Micronegas + GEM detector module @IHEP

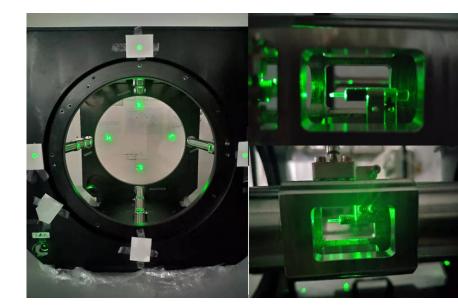
IBF×Gain ratio can meet less than 2 at the lower gain under two mixture gases
 Lower gain and lower IBF ratio

Space charge effect at the different gain

lons per UV light pulse (fC/cm²)

- **Preliminary estimation of the high luminosity Z**
- There are more safe factor when the detector will run at the lower gain (eg.2000-3000)


Different concepts with IBF suppression

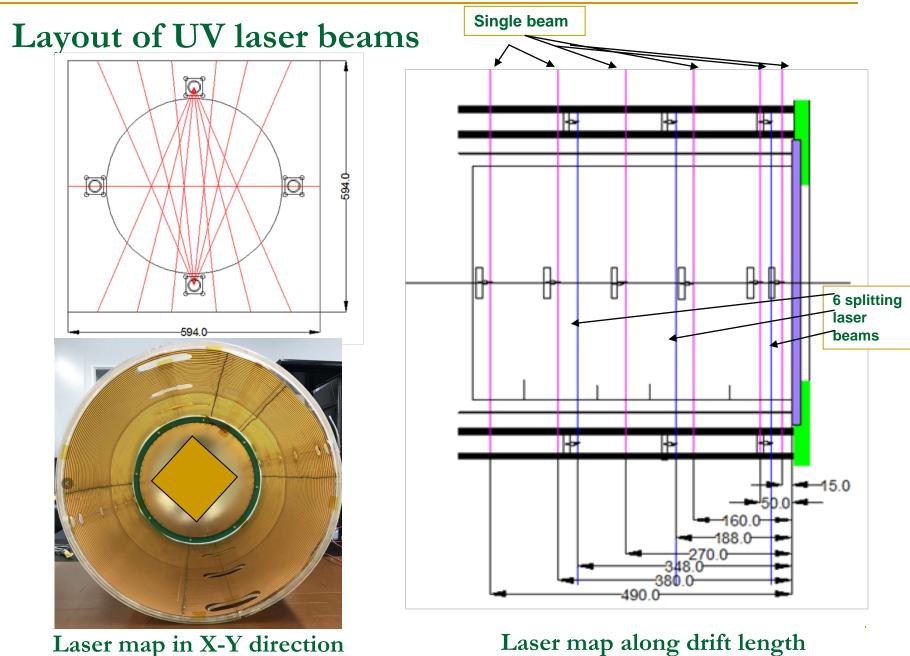

Pixel TPC with double meshes	Triple or double GEMs	Resistive Micromegas	GEM+ Micromegas	Double meshes Micromegas
IHEP, Nikehf	KEK, DESY	Saclay	IHEP	USTC
Pad size: 55um-150um square	Pad size: 1mm×6mm	Pad size: 1mm×6mm	Pad size: 1mm×6mm	Pad size: 1mm×6mm (If resistive layer)
Advantage for TPC: Low gain: 2000 IBF×Gain: -1	Advantage for TPC: Gain: 5000-6000 IBF×Gain: <10	Advantage for TPC: Gain: 5000-6000 IBF×Gain: <10	Advantage for TPC: Gain:5000- 6000 IBF×Gain: <5	Advantage for TPC: High gain: 10^4 Gain: 5000-6000 IBF×Gain: 1-2
Electrons cluster size for FEE: About Ø200um	Electrons cluster size for FEE: About Ø5mm	Electrons cluster size for FEE: About Ø8mm	Electrons cluster size for FEE: About Ø6mm	Electrons cluster size for FEE: About Ø8mm
Integrated FEE in readout board Detector Gain: 2000	FEE gain: 20mV/fC Detector Gain: 5000-6000	FEE gain: 20mV/fC Detector Gain: 5000-6000	FEE gain: 20mV/fC Detector Gain: 5000-6000	FEE gain: 20mV/fC Detector Gain: 5000-6000

TPC prototype R&D

TPC detector prototype

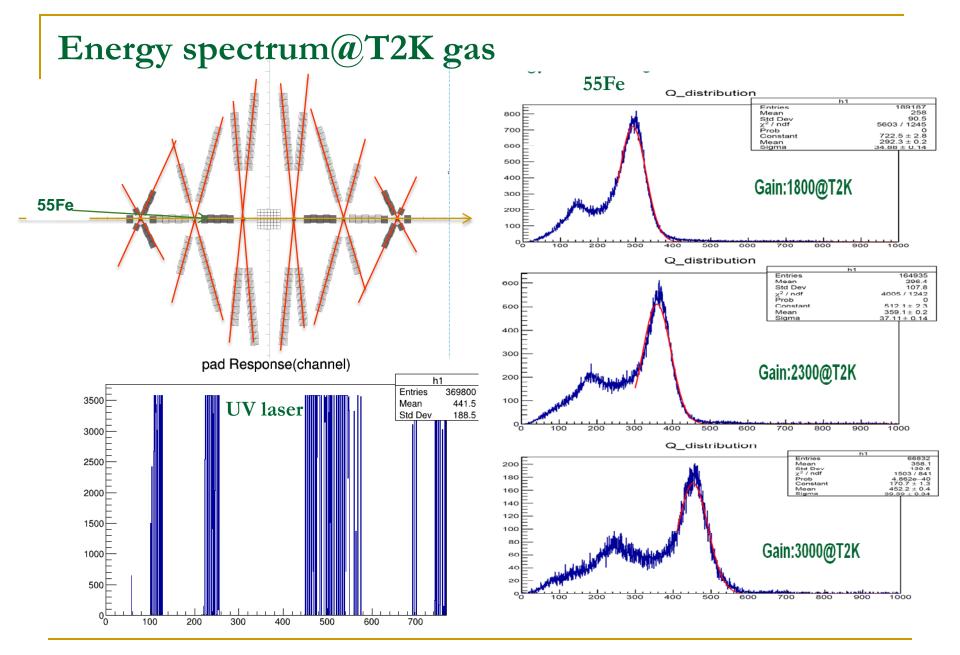
- Study of TPC prototype with 42 UV laser beams
- Main parameters
 - Drift length: ~500mm, Active area:
 200mm²
 - □ Integrated 266nm laser beam
 - **GEMs/Micromegas as the readout**

Electronics and DAQ

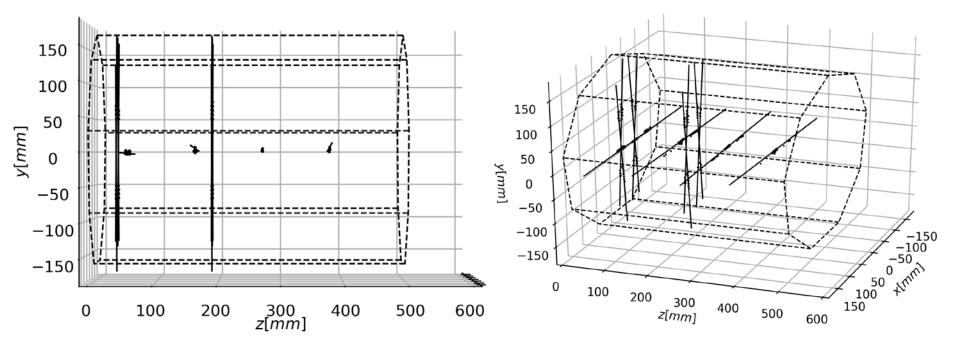

- Amplifier and FEE
 - CASAGEM chip
 - □ 16Chs/chip
 - 4chips/Board
 - Gain: 20mV/fC
 - □ Shape time: 20ns

DAQ

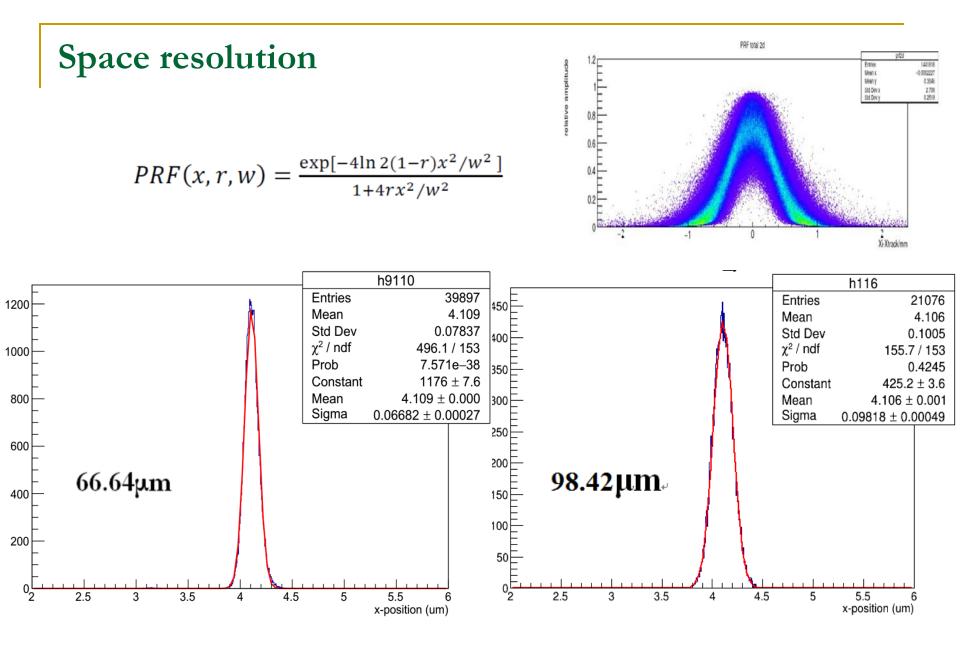
- **• FPGA+ADC**
- 4 module/board
- 64Chs/module
- □ Sample: 40MHz
- **1280chs**



FEE Electronics and DAQ setup photos

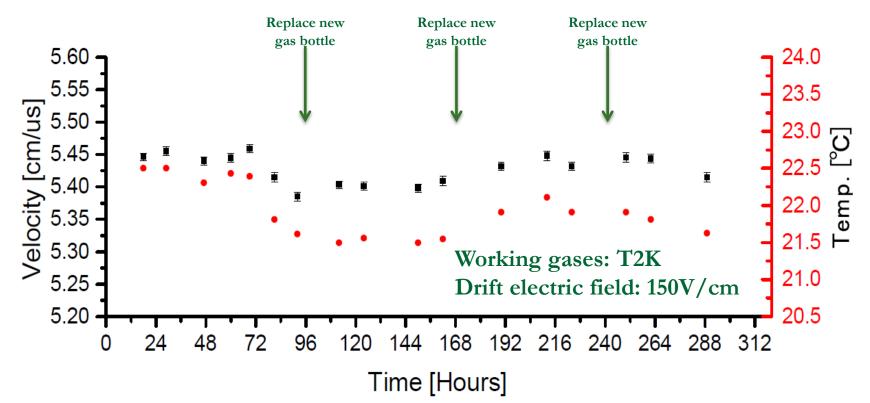

Laser map in X-Y direction

- 14 -



All pads response and energy spectrum @laser and 55Fe

Laser tracks in chamber@T2K gas


- □ Same of working gas@T2K, same of high voltage, same of test conditions
- **Different of GEMs@ 320V**
- **Triple GEMs to double GEMs**
- No discharge

Space resolution at the different drift length Left(drift length: 50mm) Right(drift length: 270mm)

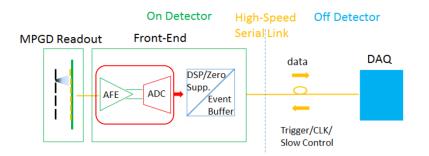
- 17 -

Drift velocity measurement

- Three weeks of continuous testing (Data of $E_{drift}=220V/cm$ is analyzing)
- **Room temperature recorded**
- Comparison of the drift velocity and the temperature
- Simulation of some influencing factors using Garfield/Gariflield++ software

Conclusion: 266nm UV laser can work well when it can be as the online monitor option.

FEE ASIC chip R&D

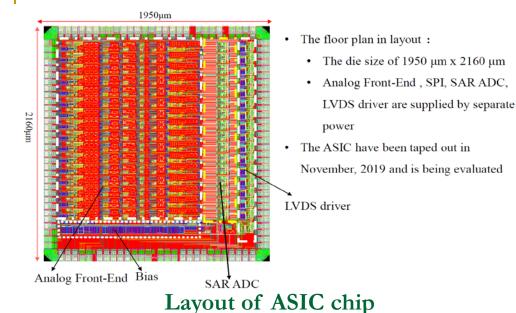

Current TPC readout ASICs

- Waveform sampling (8-10 bit, ~10MS/s) is required for TPC signal processing
- Direct ADC sampling is more preferable than SCA for high rate applications
- Lower power consumption \rightarrow less cooling \rightarrow less material

	PASA/ALTRO	AGET	Super-ALTRO	SAMPA
TPC	ALICE	T2K	ILC	ALICE upgrade
Pad size	$4x7.5 \text{ mm}^2$	$6.9 \text{x} 9.7 \text{ mm}^2$	$1 \text{x} 6 \text{ mm}^2$	$4x7.5 \text{ mm}^2$
Pad channels	5.7 x 10 ⁵	1.25 x 10 ⁵	1-2 x 10 ⁶	5.7 x 10 ⁵
Readout Chamber	MWPC	MicroMegas	GEM/MicroMegas	GEM
Gain	12 mV/fC	0.2-17 mV/fC	12-27 mV/fC	20/30 mV/fC
Shaper	$CR-(RC)^4$	$CR-(RC)^2$	$CR-(RC)^4$	$CR-(RC)^4$
Peaking time	200 ns	50 ns-1us	30-120 ns	80/160 ns
ENC	385 e	850 e @ 200ns	520 e	482 e @ 180ns
Waveform Sampler	ADC	SCA	ADC	ADC
Sampling frequency	10 MSPS	1-100 MSPS	40 MSPS	20 MSPS
Dynamic range	10 bit	12 bit(external)	10 bit	10 bit
Power consumption	32 mW/ch	<10 mW/ch	47.3 mW/ch	8 mW/ch
CMOS Process	250 nm	350 nm	130 nm	130 nm

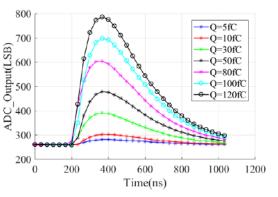
Specifics of ASIC using 65nm

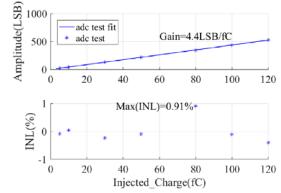
- In order to reduce the power consumption:
 - Using more advanced 65 nm CMOS process favoring digital logics
 - Reducing analog circuits:
 - CR-(RC)ⁿ \rightarrow CR-RC, moving high order shaping to digital domain
 - ADC structure : pipeline \rightarrow SAR (Successive Approximation Register)
- So far only the AFE and the ADC parts have been implemented \overline{d}

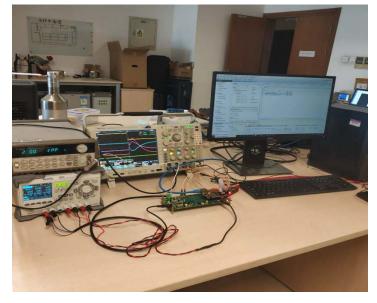


- AFE + waveform sampling ADC + direct output
- Process: TSMC 65nm LP
- Power supply: 1.2V

	AFE(Analog Front-End)					
	Signal Polarity	Negative				
	Detector Capacitance	5-20 pF				
	Shaper	CR-RC				
S	Shaping Time	160 ns				
	ENC (Equivalent Noise Charge)	<500 e @ 10pF				
	Dynamic Range	120 fC max.				
	Gain	10-40 mV/fC				
	INL (Integrated Non-Linearity)	<1%				
	Crosstalk	<1%				
	Power Consumption (AFE)	<2.5 mW/ch				
~	1					


SAR-ADC				
Input Range	-0.6 $V\sim 0.6~V$ diff.			
Resolution	10 bit			
Sampling Rate	40 MS/s			
DNL	<0.6 LSB			
INL	<0.6 LSB			
SFDR @ 2MHz, 40MSPS	68 dBc			
SINAD	57 dB			
ENOB	>9.2 bit @ 2MHz			
Power Consumption (ADC)	<2.5 mW/ch			


Tests of the ASIC chip




• Transient outputs

Gain = 4.4 LSB/fC = 4.4 x 2.34 mV/fC = 10.3 mV/fC

Test of the signals - 22 -

Results of ASIC chip

- A 16 channel low power readout ASIC for TPC readout have been developed
 - The power consumption is 2.33 mW/channel:
 - $P_{AFE} = 1.43 \text{ mW/channel}$
 - $P_{ADC} = 0.9 \text{ mW/channel} @ 40 \text{MS/s}$
 - ENC = 852 e @ Cin=2 pF, gain=10 mV/fC and can be reduced to 474 e using digital trapezoidal filter
- Future Plan
 - More ASIC evaluations: higher sampling rate, more detailed noise test, test with detectors...
 - Low power digital filter and data compression in FPGA/ASIC

Summary

Requirements and critical challenges for the high luminosity motivation:

- □ IBF×Gain should be considered at the high luminosity
- Some motivations of TPC detector for collider at Z pole run listed.

TPC module and prototype R&D:

- TPC can meet most requirements of PID and moment resolution, and others should be optimized and R&D
- Concerning TPC technology R&D in ILD collaboration, IHEP will continuously collaborated with LCTPC
- The calibration and alignment methods of the narrow UV laser beam considered for further R&D

TPC prototype R&D