

Gaseous Time Projection Chamber for Radioactive Material Screening

Haiyan Du

outline

- **1.** Motivation
- **2.** Advantage of gaseous TPC
- **3.** Background estimation and sensitivity projection
- **4.** Prototype TPC
- 5. Summary

Motivation

- Surface radioactivity measurement is key to low background experiments
- Sensitive surface measurement is not as widely available

CUORE: Neutrinoless double β decay bolometer array

PandaX-4T: dark matter liquid xenon detector

(Radon emanation)

The gaseous TPC

The gaseous TPC to measure particle energy and track

- Sample inside the TPC, high detection efficiency
- > Combine energy and track information to identify particle type and source
- > Easy to realize a large measuring area (~2000cm²), shorten measuring time

all the features help improve the sensitivity of measurement

Detector overview

Diagram of gas system Circular purify the working gas (for a long term stable run)

The gaseous TPC design (construct with low background materials)

Simulation for background study

sensitive volume: $60 \times 40 \times 10 \text{ cm}^3$ gas: one bar Argon+5% isobutane

Geometry of the gaseous TPC simulation

Background energy spectrum of different source

(Alpha background from ²³⁸U ²³²Th and ²²²Rn) と済まえまた差

Shanghai Jiao Tong University

Background energy spectrum of the components

(Alpha background from argon gas, readout plane, field cage, and cathode)

Detector response simulation and track reconstruction

Background suppression

Shanghai Jiao Tong University

Measurement sensitivity

The energy spectra of backgrounds after suppression

Sensitivity analysis of the gaseous TPC (90%C.L)

measurement time	background events	sensitivity
(day)	(counts)	$(\mu Bq \cdot m^{-2})$
1	0.26	82
3	0.77	43

Prototype TPC

Prototype TPC

Field cage and readout plane

The Micromegas readout module (20 x 20 cm²) Read out with 64 Y strips and 64 X stips

The preliminary test of prototype TPC(²⁴¹Am)

²⁴¹Am source: 3mm dot

Signals collected from the prototype TPC

- Surface contamination control is a critical part of low background experiments and surface radioactivity measurement is desirable.
- We propose a low-background, large-area (about 2000cm²), and highefficiency gaseous TPC with Micromegas readout for measurement of surface radioactivity.
- With the energy and track recorded by the TPC, TPC background can be further suppressed.
- The sensitivity of surface alpha measurement will be better than 100 µBq/m² at 90% C.L. of one day measurements.
- A prototype TPC is constructed to verify the detector's design and the analysis protocol.

Thanks for your attention!

Backup

Simulation for background study

Material	Gaseous	Acrylic	Oxygen-free	Stainless	Readout
	argon		copper	steel	plane
²³⁸ U	1.8*10 ⁻³	0.088	0.38	1.7	45 nBq.cm ⁻²
²³² Th	0.4*10 ⁻³	4.63	0.51	2.74	14 nBq.cm ⁻²
²²² Rn	0.01 mBq.m ⁻³				
⁴⁰ K		0.09	4	13.95	
⁶⁰ Co			0.2	1.03	
¹³⁷ Cs			0.16	2.36	
³⁹ Ar	1022				

Sensitivity volume: $60 \times 40 \times 10 \text{ cm}^3$

Readout plane (Microbulk Micromegas) : 58.03 \times 38.55 cm², 0.1mm thick Cathode: 60 \times 40 cm², 2mm thick Field cage: A 4 cm thick acrylic frame ssVessel: 80 \times 60 \times 15 cm³, 1cm thick

Geometry of the gaseous TPC simulation Sample: $55 \times 35 \times 0.01$ cm3

