"Does Anybody Really Know
What Time it is?”*

D. Dehmeshki, E. Frahm, R, Rusack, R. Saradhy, Y. Tousi

The University of Minnesota

*Chicago Transit Authority — 1969.



Precision Timing Needs a Better Clocks

This may seem obvious but if you want to measure the time of an
interaction in your detector you need to have a reference clock with a
jitter that adds marginally to the precision measurement you are
making with your detector.

And Iif you are using the time difference between two sensors then both clocks
need to be synchronized to better than the precision of the two sensors.

You cannot measure a 1 ps time difference if your clock has 5 ps of jitter.

As we push the limits of time measurements to

~1 ps, we need to have reference clocks that are
stable at < 1ps.
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Why Do We Need to Know the Time?
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Further developments will need even finer precision.

@y



State-of-the-Art Today
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» Random jitter 2.2 ps

TT From Jalk by T. Kugathasan December 2020.
» Deterministic jitter peak-to-peak 25 ps. ’

Source identified and LpGBT-v1 expected to
reduce deterministic jitter.

How to go to less than 1 picosecond?



https://indico.cern.ch/event/975150/contributions/4106371/attachments/2153644/3632016/HPTD9_Jitter%20optimization%20on%20the%20lpGBT_TK01122020.pdf

‘Pure’ Clock Distribution System
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Reference Clocks Drift ] Jochms| A7
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So how do you monitor the time of any
i Measurements made at the
clock and correct for drifts? CERN HPTD Lab.

*Wander is usually defined as clock phase variations at the 1 Hz level - distinct from jitter.
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How Do You Know What Time It Is?

Measuring drifts
Basic method that goes back to FM is radio is to heterodyne the signal.

Digital Dual Mean Time Difference (DDMTD) circuit*

Offset clock with foif = fret(1 - 1/N)
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Use DDMTD to measure time drifts
*First proposed by Pedro Moriera in 2010 averaged over many Cycles.
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Measuring it

Events

4 )
OCXO
FLY 640
Clock +
S|51344 y
SMA
ran-Out FLY 640
SMA
\.
DDMTD Preliminary N=100000

12000

10000 -

8000 -

6000 4

4000 -

2000 4

TIE (ns)

30255 30260 30265 30270 30275 30280 30285 30290

FIBER
FIBER

N
VTRX

y, | 4 )

MEASURE

N DDMTD/SSA
VTRX __I—‘K <

J

DDMTD Preliminary N=100000

2000 -

1500 -

Events

1000 -

500 -

e fit

-0.202 -0.201 -0.200 -0.199 -0.198 -0.197 -0.196
TIE (ns)

Qo



Multi-Channel Version
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How Do We Correct For Drifts?

To solve the problem of how to align clocks
that drift we have made a multi-cell planar
wave guide in TSMC 65 nm process.
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Digitally Controlled Phase Shifter — DCPS S B T

Measured delay step is 200 fs
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Multi-channel DCPS Test bench

Generate 160 MHz clock with OCXO
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Summary

- To exceed current state of the art achievable with clock-recovery we
have used a pure clock distribution system and demonstrated sub-
picosecond |jitter levels.

- We have demonstrated a low-cost circuit capable of tracking clock drifts
at the sub-picosecond level.

-+ We have produced a digitally controlled planar waveguide ASIC in
TSMC 65nm that can delay a digital clock signal in steps of 200 fs.

- With these tools we have shown that we can deliver a stable clock with
low wander and low jitter.

With thanks to the Department of Energy, Office ot High Energy Physics for their support.
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