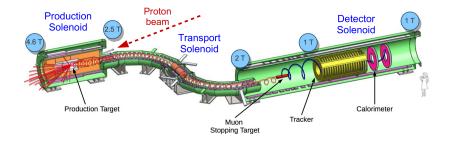

Trigger and Data Acquisition for the Mu2e-II experiment

Richie Bonventre for the TDAQ group of the Mu2e-II collaboration CPAD 2021

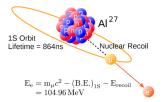
Lawrence Berkeley National Lab

Mu2e-II Physics Motivation

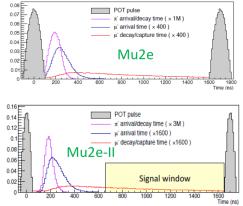
Aims to improve sensitivity to charged-lepton flavor violating (CLFV) neutrino-less conversion of a nuclear bound muon into an electron by an order of magnitude over Mu2e



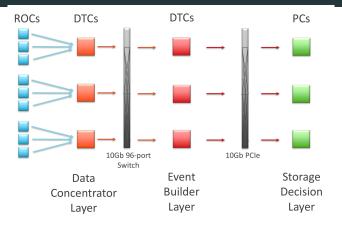
• No observation in Mu2e: extend search to higher mass scale


 Observation in Mu2e: precision measurement, explore models with different targets https://mu2eiiwiki.fnal.gov/wiki/Mu2e-II

- Expression of interest: arXiv:1802.02599
 - 130 signatories, 36 institutions, 6 countries
- 11 SNOWMASS LOIs
 - Several working groups performing studies that will lead to future white papers

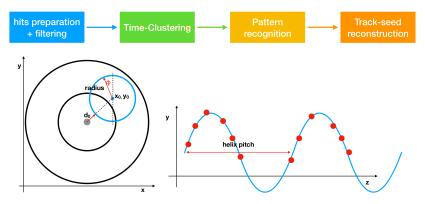

Mu2e / Mu2e-II general design

- Muons stop on stopping target, muonic decay or convert
- CLFV signal is 105 MeV electrons
- Main detectors are tracker, calorimeter, plus cosmic ray veto



Mu2e-II upgrade overview

- Take advantage of the PIP-II beam upgrade
 - Higher intensity and duty factor to get 10x more muons
 - Narrower pulses, less pulse to pulse variation
- Detectors and TDAQ upgraded to handle higher rate
- Timescale: Start around 2030 with 3 years of data taking


Mu2e-I Readout and trigger scheme

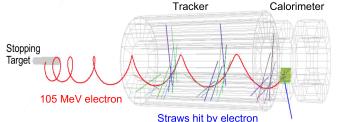
- Large front end buffers to average over long offspill time
- ${\sim}40$ GB/s data read out to storage decision layer, ${\sim}280$ MB/s written to disk
- 69 DTCs (Kintex-7) for data readout and event building
- 800 threads on 40 nodes for HLT $ightarrow \sim$ 5 ms per event

Mu2e-I Readout and trigger scheme

Software high level trigger design:

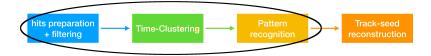
- Can be constrained with calorimeter information
- Filtering between each stage
- Final stage is χ^2 helix fit

- Beam dutyfactor increases by ${\sim}4x$
 - Mu2e uses 25%, large off spill components of every 1.4 s beam spill
 - With PIP-II, DUNE will only use 1.1%, allows Mu2e-II to have ~97% dutyfactor
- \bullet Instantaneous proton rates ${\sim}3x$ higher than Mu2e
- Assume 2x more detector channels


- Total data rate \sim 20x higher 40GBps \rightarrow 800 GBps from front end 200 KB \rightarrow 1 MB event size (@600 KHz)
- Mu2e has 7 PB/year tape capacity, assume 2x for Mu2e-II \rightarrow Storage level decision trigger rejection >3000x
- With near 100% beam dutyfactor large front end buffers no longer useful
 - May need low latency trigger

- Radiation levels at the front end will also be ${\sim}10{\rm x}$ that in Mu2e
- Mu2e ROCs use Microsemi Polarfire FPGAs
 - Configuration memory immune to SEU effects
 - Tested up to 2e12 n/cm^2
 - may be sufficient for Mu2e-II as well
- Mu2e also uses rad-hard VTRx transceivers (374×0.6 GBps = 224 GBps), will need more / higher speed links
 - Again hope to use LHC technology

- Option 1: A trigger-less TDAQ system based on software trigger
- Option 2: TDAQ based on GPU co-processor
- Option 3: A 2-level TDAQ system based on FPGA pre-filtering
- Option 4: A 2-level TDAQ system based on FPGA pre-processing and trigger primitives


Option 1: A trigger-less TDAQ system based on software trigger (Scale up current Mu2e approach)

- Requires 10x more hardware than Mu2e, even assuming 2x performance improvement
- Non-linearity of combinatorics may mean this is an underestimate
- Could use calorimeter for initial time pre-filtering
- Could use partial event building
 - Mu2e tracks make multiple loops
 - May be possible to segment tracker, trigger on reconstruction of only smaller part, greatly reducing combinatorics

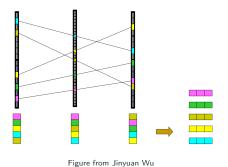
- Reduce hardware requirements for HLT by parallelizing work on GPUs
- Can we parallelize Kalman Filter helix fit?
- Use GPU co-processor as a service? (M. Wang et al., arXiv:2009.04509)

Option 3: A 2-level TDAQ system based on FPGA pre-filtering

- L1 hardware trigger implemented on FPGAs
- Utilize HLS
 - First stages of Mu2e trigger require MVAs, histograms
- Events that pass L1 move on to software HLT
- Requires concentrating event data onto one board

Option 4: A 2-level TDAQ system based on FPGA preprocessing and trigger primitives

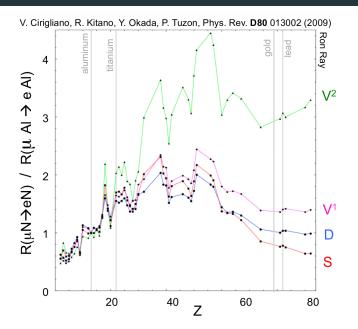
- Front end FPGAs build trigger primitives (e.g. track stubs) and have short buffer for full event data
- Design new L1 trigger algorithms running on these primitives, greatly reducing amount of data required to be concentrated on L1 FPGA boards
 - Possible to change readout configuration at front end to better allow local reconstruction
 - Still exploring upgraded tracker design
- Full data stream send directly from front end to HLT layer


Option 4: A 2-level TDAQ system based on FPGA preprocessing and trigger primitives

- Front end FPGAs build trigger primitives (e.g. track stubs) and have short buffer for full event data
- Design new L1 trigger algorithms running on these primitives, greatly reducing amount of data required to be concentrated on L1 FPGA boards
 - Possible to change readout configuration at front end to better allow local reconstruction
- Ft

- Mu2e-II will increase sensitivity to muon conversion by an order of magnitude over Mu2e
 - Extend mass scale reach or
 - · Help discriminate between new physics models
- Expect 20x data rate, 10x radiation dose
- Several options for increasing speed of software high level trigger or implementing hardware L1 trigger
 - We have just begun exploring these options
- Possibility of running prototype of any L1 trigger during Mu2e second phase
- Comments welcome!

Backup


Example trigger primitive building: Tiny Triplet Finder

- Finds and reorganizes hits by track segment coincidences
- Fast / efficient resource usage using bit shifters + bitwise logic units
- Can handle about 20 hits per layer every 100 ns
- Works for curved tracks and different detector geometries

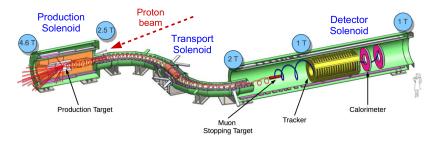
Mu2e-II Physics Motivation

 $19 \, / \, 16$

FPGA scaling

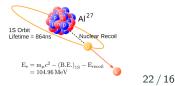
Mu2e-I DTC ──→	KINTEX."	KINTEX. UltraSCALE	VIRTEX.7	VIRTEX. Uitrascale
Logic Cells (LC)	478	1,161	1,995	4,407
Block RAM (BRAM) (Mbits)	34	76	68	132
DSP-48	1,920	5,520	3,600	2,880
Peak DSP Performance (GMACs)	2,845	8,180	5,335	4,268
Transceiver Count	32	64	96	104
Peak Transceiver Line Rate (Gb/s)	12.5	16.3	28.05	30.5
Peak Transceiver Bandwidth (Gb/s)	800	2,086	2,784	5,886
PCI Express Blocks	1	6	4	6
Memory Interface Performance (Mb/s	s) 1,866	2,400	1,866	2,400
I/O Pins	500	832	1,200	1,456

PIP-II


Muon Campus

Beam from new PIP-II Superconducting Linac

Booster and Main Injector beam


New LBNF beam to DUNE in South Dakota

Mu2e / Mu2e-II general design

- Production solenoid
 - Proton beam hits production target
 - Magnetic mirror directs low momentum pions/muons to transport solenoid
- Transport solenoid
 - S-shape sign and momentum selects

- Detector solenoid
 - Muons stop on stopping target, muonic decay or convert
 - Look for 105 MeV electrons

