

Development of the Mu2E electromagnetic calorimeter front-end and readout electronics

Franco Spinella On behalf of the Mu2e calorimeter group

INFN Pisa

Outline

- The Mu2E experiment: goal and experiment layout
- The Electromagnetic Calorimeter
- Calorimeter electronics scheme
- Front End electronics
- Why a digitizer?
- Which requirements?
- Digitizer spec, architecture and design
- Qualification tests
- Conclusions

Mu2e experiment layout

Production Solenoid (PS)/Target

- An 8 GeV proton beam hits a tungsten target and *produces* mostly π
- A *graded magnetic* field reflects slow forward μ/π and contains backward μ/π

Detector Solenoid (DS): stopping target and detectors

- Stops μ^{-} on Al foils (decay time ~ 864 ns)
- Events reconstructed by detectors, optimized for 105 MeV momentum
- 1 T B field and 10⁻⁴ Torr vacuum in the detector zone

Calorimeter provides:

- *Particle Identification*: e/μ separation \rightarrow reject μ background
- Improve the track pattern recognition
- Standalone trigger

• energy resolution $\sigma_{\rm E}/{\rm E}$ <10%

@ 105 MeV

- timing resolution σ(t) < 200 ps
- position resolution < 1 cm
- Work in vacuum @ 10⁻⁴ Torr
- 1 T Magnetic Field

- 1. CsI Crystals coupled with Silicon PhotoMultipliers(SiPM)
- Light Yield(photosensor)>20 pe/MeV
- Fast signal for pileup and timing
- 2. Detector must Survive high radiation environment
- TID of 90 krad/5 year for crystal
- TID of 75 krad/5 year for sensor
- 3x10¹² n/cm² for crystal
- $1.2x10^{12} n/cm^2$ for sensor

Calorimeter design

JV-extended SiPMs

- High granularity → 1348
 undoped Csl crystals (3.4x3.4x20 cm³)
- *Crystals arranged in 2* disks (inner/outer radius 37.4 cm / 66 cm, separation between disks 75 cm)
- *1 crystal coupled to 2* UVextended *SiPMs* (14x20 mm² area) → 2696 electronic channels
- SiPM packed in a parallel arrangement of 2 groups of 3 cells biased in series
- DAQ *crates located* inside the cryostat to limit the number of pass-through connectors

Front End Electronics

- FE boards connected to SiPMs to provide:
 - Amplification & shaping
 - Local linear regulation of the bias voltage
 - Monitoring of current and temperature
 - o Test pulse

CRATE + DIRAC +MB X20 (10 + 10)

NFN

«Physics» requirements:

- Digitization requirements = function (calorimeter requirements)
- Particle-Id:
 - $\circ \sigma_{t}$ < 200 ps @ 100 MeV
 - ο σ_E/E <10% @ 100 MeV
- We need to define:
 - Sampling frequency and number of ADC readout bits (impact time and energy resolution)
 - o Thresholds (impact the total data throughput and Energy resolution)
 - o Zero suppression algorithm (big amount of data)

ADC requirements

- Simulation results show that a digitizer with:
 - Sampling frequency of *200 MHz*
 - ADC with *12 bits resolution*

Matches the calorimeter requirements on time and energy resolution

	150 MHz	200 MHz	250 MHz
8 bits	470 ps	440 ps	440 ps
10 bits	370 ps	250 ps	250 ps
12 bits	300 ps	170 ps	170 ps

	150 MHz	200 MHz	250 MHz
8 bits	9.8 MeV	8.0 MeV	7.8 MeV
10 bits	6.5 MeV	5.5 MeV	5.5 MeV
12 bits	6.2 MeV	5.5 MeV	5.5 MeV

Time resolution versus sampling frequency and ADC-bits

Energy resolution versus sampling frequency and ADC-bits

- *Time* is reconstructed by fitting the leading edge
- Time resolution for Conversion Electrons (~105 MeV)

- *Energy* is reconstructed from the total number of ADC counts
- Energy resolution (FWHM/2.35) for Conversion Electrons (~105 MeV)

Environmental requirements?

- System located inside the cryostat \rightarrow Harsh Environment.
 - Magnetic field of 1 T and 10⁻⁴ Torr vacuum
 - Total Ionizing Dose (*TID*):
 - ➢ 0.2 krad/yr (from simulation)
 - 12 Safety factor (requested from collaboration)
 - 5 years data tacking
 - TID 12 krad
 - *Neutron flux* 5x10¹⁰ 1 MeV (Si)/yr (from simulation)
- Mechanical constraints \rightarrow DAQ crates located inside the cryostat:
 - \circ Limited space \rightarrow 20 ADC channels/board
 - o Limited access for maintenance \rightarrow *Highly Reliable Design* mandatory

DIRAC architecture

DIRAC design

PCB specs:

- Material: FR408-HR
- *Layers:* 16
- *Dimensions:* 233x165 mm
- *Thickness:* 2.127 mm
- *Differencial lines*: 100 Ω
- *Single ended lines*: 50 Ω

After an intense campaign of tests:

- ADC: ADS4229 (Texas Instruments[®])
- FPGA: Polarfire MPF300 (Microsemi[®])
- *DC-DC*: LMZM33606
- LDO: MIC69502 (Micrel®)
- Jitter Cleaner. LMK04828 (Texas Instruments[®])
- *Optical Transceiver*: CERN VTRX

DIRAC qualification tests

Several test campaigns were performed:

- *Total Ionizing Dose (TID)* \rightarrow requested 12 krad:
 - o YELBE @HZDR
 - γ from Bremsstrahlung (0<E<14MeV)</p>
 - > Extimated dose ≈ 20 krad/h @ 600 μ A
 - Single components test
 - o Calliope @ENEA
 - Co60 source
 - Dose in function of distance: Max 2krad/h, requested 1krad/h
 - Full board test
- Magnetic Field (B):
 - o LASA @INFN Milano (1T)
- Neutron irradiation test
 - o FNG @ENEA
 - ➤ Total neutron flux of 1.2 x10^12 n 1 MeV (Si) / cm^2
 - ➢ Total neutron flux of 6x10^11 n 1 MeV (Si) / cm^2
 - LMZM33606 test

YELBE facility, HZDR lab, Dresden

 Photons is produced per Bremsstrahlung by the electron beam hitting a niobium foil in the accelerator hall

Mu2e

- Nominal beam conditions: 17 MeV electrons, 600uA, 12.4 um niobium radiator foil
- Simulated *dose rate ≈ 18.6 krad/h*
- Active dosimetry used to confirm simulated dose rate

Calliope facility, ENEA Lab (Bracciano-Rome)

- Gamma rays at 1.17 and 1.33 MeV from *Co60*.
- 3.7x10^15 Bq of activity.
- *Isotropic source*, flux scales with r^2

LASA facility, INFN Milano lab.

⊕z

- Uniform magnetic field up to 1.2 T
- We tested different orientations of the DCDC with respect to the magnetic field
- Same setup of the radiation tests

FNG facility, ENEA Frascati lab (Rome)

Frascati Neutron Generator (FNG) is a linear electrostatic accelerator in which up to 1 mA D+ ions are accelerated onto a Tritium target

- Up to 10^11 14 MeV neutrons/s
- almost *isotropic source*, flux scales with r²
- calibrated at 3% level using alpha particles

$D+T \rightarrow \alpha + n$

DIRAC: TID test results

LMZM33606 and MIC69502 Vout(rad;t)

Conclusions:

- 41 h beam time
- Nominal Dose Rate ≈ 1krad/h
- TID ≈ 41krad
- No evidence of broken components up to 35 krad
- LDO small increase, fast recover if no beam

Tests in magnetic field results

Test conditions:

- View X (parallel to B)
- Vin 28V, Vout 2.5V
- Variable load
- Switching frequency

Efficiency quite low (still acceptable), higher if Vin lower

Test conditions:

- View X (parallel to B)
- Vin 28V, Vout 3.3V
- Variable load
- Constant frequency

Vout constant

Main firmware flow ... 6 Gbyte/sec ...

- TDAQ sends Heartbeat packet that contains EVENT TAG and EVENT WINDOWS
- 2. DiRAC builds the calo hit applying a zero suppression and pre-processing data
- 3. Data are stored in the DDR
- TDAQ sends Data Request for a specific EVENT TAG, and DiRAC retrieve requested Data Packet from DDR and sends it out to DTC

Slice test results

An example of the resulting waveform (Fig.A) and the distribution of the peak amplitude versus the integrated charge (Fig.B) is shown

Fig.B: Energy distribution deposited by cosmic rays (ADC counts)

Conclusions

- A waveform digitizer designed to operate in Mu2e hostile environment has been presented. Named DIRAC.
- The DIRAC is designed to sample @200 MHz differential signals coming from SiPM and amplified by a custom FEE.
- The presence of vacuum (10⁻⁴ Torr), high magnetic fields (1T) and radiation (Nonlonizing Energy Loss 5x10¹⁰ n/cm² @ 1 MeV_{eq} (Si)/y and Total lonizing Dose 12 Krad) makes the environment particularly harsh and the design of the board very challenging
- We described the apparatus, the design specification, the architecture and all the technical choice
- The system has been qualified

This work was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement no 734303, 822185, 858199, 101003460

Thank you!

franco.spinella@pi.infn.it