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New generation sensors and detectors have :

• More pixels;

• Faster sampling rates;

• Better sensitivity and dynamic range;

• Larger surface area;

• Too much data!
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Why do we need Real-Time ML ?
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Collecting all raw data

• Requires more wiring, more transmission power
• kW to MW of power just for transmission

• Requires sophisticated short term storage
• Parallel SSD array

• Generates cost for long term storage
• M$ per month for maintenance of facilities

• Adds to transfer times and compute times
• Often repeating the same initial data preparation

Why EdgeML?

Applications

What is ML?

Hardware

Challenges

Conclusion



Why do we need Real-Time ML ?

8

Why EdgeML?

Applications

What is ML?

Hardware

Challenges

Conclusion

According to the BRN Panel

Priority Research Direction 21 is:

Achieve on-detector real-time, continuous data 
processing and transmission to reach the exascale.

Ian Shipsey and Bonnie Fleming
Thursday 10:10
CPAD workshop
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Applications
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Angular Streaking Detector (LCLS-II)
N. Hartmann et al., Nature Photonics, 2018

https://doi.org/10.1038/s41566-018-0107-6

168 GB/s
Low latency diagnostic 

detector
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Time of Flight Computed Tomography
Rossignol, J. et al. 2020 

doi.org/10.1088/1361-6560/ab78bf

~120 TB/s
14x14 in2
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Applications
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Liquid Argon detectors for dark matter search
Global Argon Dark Matter Collaboration

CPAD2019

~1.2 GB/s
DS20K Veto system

Future ARGO DAQ system

Billion-pixel camera for X-ray applications
Hu, C. et al, 2019

doi.org/10.1016/j.nima.2019.06.011

~2GB per image
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What is Machine Learning?
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What is Machine Learning
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Input Program Output

Traditional programming

Input ProgramOutput

Machine Learning
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Benefits of ML
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Recognizing patterns

Recognizing
anomalies

Non linear regression
→ reconstruction
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Benefits of ML
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Faster more flexible 
programming

Lower computational
burden

Fast inference
Low latency decision
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Hardware
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ML Hardware - GPU

18 https://nyu-cds.github.io/python-gpu/01-introduction/

Thousands of ALU

Highly parallel

Batch oriented

Host CPU

Power

Size
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Detector
Online analysis

nodes
Disks

Detector EdgeML
Online analysis

nodes
Disks

Source

DAQ
(ASIC/FPGA)

ML Hardware – the Edge

CERN-ATLAS
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ML Hardware - FPGA
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Reconfigurable

Efficient

I/O capacity

Programming

Limited clock

Limited resources

Logic
Memory
Digital signal processing slices
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ML Hardware - ASIC
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Efficient++

Custom I/O

3DIC

Reconfigurable

Expensive

Long design cycle

TSMC

IBM
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Challenges
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Selecting models for hardware

23

Architecture Loss (test set) Processing time (s) # parameters

Fully connected 0.435 6.970e-4 1 729 964

Convolutional 0.778 4.959e-4 615 748

Recurrent 0.582 2.698e-3 197 120

Angle (rad)
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Work : Xavier Groleau
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Training Datasets
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Dataset

Simulated Measured

• Model validation
• Bias
• Added noise
• Anomalies

• Extracting labels
• Noise
• Gaps
• Format
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Data and model provenance
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Dataset

Model 1

Model 2

Model 3

Dataset

Dataset

Dataset
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User endorsement

How do we convince the users of the instruments that 
the machine learning inference gives them accurate 

information?

• Validation

• Interpretation

• Uncertainty measurement

• Raw data sampling

• Others?
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Conclusion
Edge Machine Learning is key to exploit 
the full potential of new high rate
detectors and will accelerate critical
discoveries…

…but we have a lot of work to do!

Detector EdgeML
Online analysis

nodes
Disks

Source


