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Why do we need Real-Time ML ?

New generation sensors and detectors have :

 More pixels;
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New generation sensors and detectors have :

 More pixels;
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* Larger surface area;

e Too much data!



Why do we need Real-Time ML ?

Collecting all raw data

* Requires more wiring, more transmission power
e kW to MW of power just for transmission
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Ml What is mL? * Requires sophisticated short term storage
\% * Parallel SSD array

\\‘ Hardware

\ * Generates cost for long term storage

-, Challenges * MS per month for maintenance of facilities

* Adds to transfer times and compute times
 Often repeating the same initial data preparation
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According to the BRN Panel
Priority Research Direction 21 is:
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Achieve on-detector real-time, continuous data
processing and transmission to reach the exascale.

Technical
Requirements
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) Connections outside of HEP:

} O) *® DOE Nuclear Physics and DOE Basic Facilities and Capabilities (existing and needed)
- g Energy Sciences. e partnerships between U.S. national laboratories
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Machine-learning and implementation and universities for tool, ASIC, and TDAQ h C| . | .
overlap with technology industry: development lan S Ipsey an Bonnie F eming

Aeronautics, smart power grids, e irradiation facilities, integration test facilities Thu rsday 10:10

autonomous vehicles...
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Angular Streaking Detector (LCLS-I1)

N. Hartmann et al., Nature Photonics, 2018
https://doi.org/10.1038/s41566-018-0107-6

168 GB/s
Low latency diagnostic
detector
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Time of Flight Computed Tomography
\6_ . Rossignol, J. et al. 2020

- Conclusion doi.org/10.1088/1361-6560/ab78bf
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. ~120 TB/s

11 14x14 in?
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\\\ What is ML?

Billion-pixel camera for X-ray applications

Hu, C. et al, 2019

doi.org/10.1016/j.nima.2019.06.011
« LOs Alamos

NATIONAL LABORATORY
EST.1943

~2GB per image

Photo
Detectors

Liquid Argon detectors for dark matter search

F\‘ ] a7 Global Argon Dark Matter Collaboration
il mj ‘ , CPAD2019
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Future ARGO DAQ system
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What is Machine Learning

Tradltlonal programming
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Machlne Learning
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Thousands of ALU
Highly parallel

Batch oriented

GPU

https://nyu-cds.github.io/python-gpu/01-introduction/



ML Hardware — the Edge
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ML Hardware - FPGA

] Logic
[ ] Memory
I Digital signal processing slices

Reconfigurable
Efficient

1/O capacity
Programming
Limited clock

Limited resources



Efficient++
Custom 1/0
3DIC

Reconfigurable
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Selecting models for hardware
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Applications

What is ML?

Kinetic Energy (eV)

Hardware

Angle (rad)

Architecture Loss (test set) Processing time (s)
Fully connected 0.435 6.970¢4 1729964

Conclusion

0.778 4.959¢4 615 748
0.582 2.698¢3 197 120

Work : Xavier Groleau
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Training Datasets

e Model validation

| Bias
e Added noise
e Anomalies

Extracting labels
Noise

Gaps

Format
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Data and model provenance




User endorsement

hy EdgeML?

How do we convince the users of the instruments that
Applications the machine learning inference gives them accurate

information?
What is ML?

Hardware e Validation

* Interpretation
x—% * Uncertainty measurement x%

 Raw data sampling
 Others?

Conclusion
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Edge Machine Learning is key to exploit Institut

the full potential of new high rate IMterdisciplinare
detectors and will accelerate critical technologique
discoveries... R AR ObKE
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Detector EdgeML




