BMX Interferometer: Calibration Studies for a 21cm Intensity Mapping Experiment

<u>P. O'Connor</u>, Anze Slosar, Justine Haupt, Ben Saliwanchik, Paul Stankus, Tom Throwe (BNL) Laura New burgh, Maile Harris, Emily Kuhn, Annie Polish, Will Tyndall (Yale)

Gregory Troiani ((UMKC)

Clarence's plenary talk PUMA whitepapers:

<u>1., 2., 3.</u> <u>2020 SPIE</u> <u>Paul's 2019 CPAD talk</u>

Key technological challenges for 21cm line intensity mapping

- Since the cosmological 21cm signal is ~10⁴ weaker than astrophysical foregrounds, the major challenge for this method is <u>foreground mitigation</u>.
- The key to achieving clean foreground separation is <u>calibration</u>:
 - Antenna element primary beam angular response vs. frequency
 - Gain and phase response of the signal chain vs. frequency
 - Accurate sky maps of (polarized) galactic and extraglactic sources
- Precision timing distribution to ensure coherent recording of GHz signals arriving at thousands of stations separated by km
- Power-efficient, real-time processing of network data streams approaching 1Pb/sec
- Robust and mass-producible methods of dish and receiver manufacture

Composite dish construction

HIRAX

2

BMX instrument

Front end electronics

Telescope layout

Reflector array and baselines

Location on BNL campus

BMX field of view on sky

Horizon coordinates

FOV unwrapped superimposed with radio source map

Calibrators

	DIODE	UAV	GNSS	MW	CygA
For:	gain(v)	beam(v)	beam	beam, frequency	beam, array layout
Range	0	170 m	2e7 m	5e20 m	6e24 m
Heading angle	-	Any	~NE, ~SW	W	W
Angular rate	-	1 – 1.1 °/s	0.006 - 0.01 °/s	0.0032 °/s (sidereal)	0.0032 °/s (sidereal)
Passes/day	-	up to 10	20 - 30	1	1
Power	ЗК	200,000K adj.	20,000K max.	1 40K	5 K @ 1.42GHz
Polarization	No	Yes	No	No	No

UAV calibrations

- Vehicle: commercial DJI hexacopter. Flight time ~25 minutes per battery change.
- Transmitter: switched, broadband noise source + biconic antenna (polarized). Variable attenuator to set power level.
- Position determination: differential GPS, ~1cm accuracy.
- Timebase: GPS
- Flight plan: ascend to far field (~170m), fly raster pattern over telescope. Drone "yaw" orientation sets polarization direction either aligned with or perpendicular to direction of travel. While flying legs of the raster, typical speed 2 - 4m/s.
- Thanks to Yale team of L. Newburgh for use of DJI

Flight patterns

Repeat rasters in N-S, E-W heading, each polarization, each power level Higher transmit power and larger extent used to probe sidebands

UAV calibrations

First Airy disc null for 3.95m aperture at 1500MHz

Measured data includes full frequency range and both polarizations per dish.

Analysis by G. Troiani

1110.0

1200.0

1301.0 1292.0 1400.0

1501.0

10

GNSS satellites: constellations, passes over BMX

GPS

- 6 Orbital planes
- 24 Satellites + Spare
- 55° Inclination Angle
- Altitude 20,200km

Galileo

- 3 Orbital planes
- 27 Satellites + 3 Spares
- 56[°] Inclination Angle
- Altitude 23,616km

GLONASS

- 3 Orbital planes
- 21 Satellites + 3 Spares
- 64.8^o Inclination Angle
- Altitude 19,100km

Predicted tracks over BMX

Angular rates and headings

GNSS passes over BMX on 1/3/2020 (13 satellites observed in 4 constellations)

Fitting beam parameters to multiple GNSS signals

Method

- Integrate measured single-dish power over GNSS band from 1100 to 1378 MHz.
- Remove DC offsets
- Define 1-hour time windows centered around transits of up to 16 GNSS satellites (one day at a time).
- Assemble "stitched" data:
 - Data set is predicted $[\theta_x(t), \theta_y(t)]$, signal(t).
- Jointly fit 2D Gaussian beam model having parameters amplitude, beam pointing center and width ($\theta_{x0}, \theta_{y0}, \sigma_x, \sigma_y$).

Concatenated input data set (16 satellites on 1/10/2020)

Fitted beam parameters over 21-25 Jan. 2020. Data for W dish, Y polarization

beam parameter	mean	st. dev.	
θ _{x0}	0.3639	0.1229	
θ _{y0}	-1.5392	0.1863	pointing direction
σ _x	1.5953	0.1568	beam width
σγ	1.7222	0.1030	
	deg	deg	

statistics (mean subtracted)

21cm clouds in Milky Way

*Milky Way map in RA and frequency for the BMX strip. Top map is BMX data, bottom is rebinned data from the HI4PI survey*¹. Note, both maps start at 18h RA (left). After 24 hours, the BMX map extends to 22h the following day while the HI4PI map simply wraps around. Obs. Start: 21:45 UTC 20 October 2020.

Detail of galactic HI structure. Each of the five sub-panels shows BMX spectrometer data in adjacent 130kHz frequency bins during the MW transit of 1 Dec 2017. The x-axis in each sub-panel covers the same ~ 100 degrees of RA. After transforming frequencies to a Local Standard of Rest (LSR) which takes into account motions of the Earth and Sun, data is fit to a Gaussian beam model (shape, pointing, frequency offset) with the HI signal predicted by the HI4PI map.

Analysis by C. Sheehy

Instrument design: radio interferometer

One baseline $(N_{dish} = 2)$

NRAO

Interference fringes based on path length difference between 2 stations

- Angular resolution λ/|b|
- Angular field of view λ/D "primary beam"
- Collecting area $\pi D^2 N_{dish}/4$

Phase of the interference fringes
encodes angle to source (
$$\theta$$
):
$$R = B(\theta) \cdot e^{-i\phi}$$
$$\phi = \frac{2\pi(\vec{b}\cdot\vec{s})}{\lambda} = \frac{2\pi|b|\cos\theta}{\lambda}$$

$B(\theta)$ = angular response of dish primary beam

Airy disc and Gaussian approximation

EM sim (<u>not</u> BMX!)

Cygnus A transit interference fringes

- BMX DAQ records cross-correlations of each pair of dishes (baselines) across the full frequency band
- Fringes with SNR ~200 are seen during transit of pointlike CygA source
- For every baseline and polarization, fit observed fringes to 1-D model having parameters: amplitude, pointing offset from zenith, width of (composite) beam in Gaussian approximation, projected baseline length in E-W direction, and time delay between signal transmission paths. Position of CygA in horizon coordinates known to high precision.

GNSS

atellit

15

GNSS satellit

Repeat fit for several frequency bins, avoiding regions likely to be contaminated by nearby GNSS passes.

Fringes from transit of 17 April 2019

polarization Y

polarization Y

polarization X

polarization X

Results for fit to CygA fringes

	b12	b13	b14	b23	b24	b34
X-pol	4.478 ±	2.594 ±	4.021 ±	4.277 ±	8.745 ±	4.347 ±
	0.066	2.671	0.075	0.042	0.072	0.057
Y-pol	4.317 ±	1.919 ±	4.260 ±	4.301 ±	8.776 ±	4.283 ±
	0.103	2.556	0.071	0.096	0.095	0.059

RA pointing offsets

Note b12+b14 = b23+b34 = b24 within error

Future plans

- BMX "tune up":
 - Improve self-RFI environment at BMX site
 - Align beams (adjust dish and horn positions)
- Fixed-wing drone
- EM Sims of beam shape
- Analysis improvements
- Replace digitizer + channelizer with RFSoC-based platform
- GPS navigation message decoding
- Acquire stable data for ~months

- detect cosmic 21cm signal at 0 < z < 0.3 in cross-correlation with galaxy survey

Summary

- BMX is an R&D test bed for 21cm line intensity mapping
- During 2019 present we have been investigating beam and array calibrations
- Calibrators include UAV, satellite, and astrophysical sources
- Post-COVID plans for additional telescope upgrades and UAV flight campaigns
- Calibration R&D is on the critical path for assessing feasibility of a future large scale survey

Acknowledgement:

BNL LDRD 19-022 BNL Instrumentation Division OHEP KA-25 program BNL Office of Educational Programs Mar. 2020 UAV flight campaign conducted with support from Yale Physics

BACKUP MATERIAL

Origin and ubiquity of 21cm emission

Grey: optical Purple: 21cm

Spectral line at 21cm rest-frame wavelength is *sharp* and *isolated* → Once detected, provides *precise redshift*

Intensity Mapping technique

Traditional galaxy survey:

individual sources observed, one at a time with spectrograph

Intensity mapping survey:

- integrated emission observed as a function of frequency (redshift)
- choose $\Delta \theta$, Δf to be sensitive to scales of interest to cosmology

Build up tomographic reconstruction of density field across large volume of space

 Several 1st-generation IM dark energy experiments online, under construction, and proposed: CHIME (Canada), HIRAX (S. Africa), BINGO (Brazil), TIANLAI (China)

0.00

• US participation minimal at this time

- A next-generation cosmic survey using intensity mapping of the 21-cm emission from neutral hydrogen
- Proposal submitted to the ASTRO2020 Decadal Survey and Snowmass LOI call
- Interferometric array of 32,000 (5,000) six-meter dishes closely packed
- Redshift range 0.3 < z < 6 corresponding to 1100 < v < 200 MHz
- Primary science goals:
 - Probing physics of dark energy in the pre-acceleration era
 - Searching for signatures of inflation
 - Probing the transient radio sky (fast radio bursts and pulsars)

Current/Upcoming OHEP-sponsored cosmic surveys

Dark Energy Survey (DES)

Galaxy Imaging, broadband filters 504 Mpix CCD Focal Plane Operations 2014 - 2019

Dark Energy Spectroscopic Instrument (DESI)

Galaxy Spectra 5000 Fiber Focal Plane Operations 2019- 2024

Large Synoptic Survey Telescope (LSST)

Galaxy Imaging, broadband filters 3.2 Gpix CCD Focal Plane Operations 2023 - 2033

- Power of a cosmic survey to measure cosmological parameters is limited by
 - redshift range and accuracy
 - sensitivity (number of sources)
 - scale
- Improved statistics has to come from increasing *survey speed* and/or increasing *sensitivity* to *fainter/redder* sources, while preserving redshift accuracyr.

Obstacles to scaling optical surveys

Detector technology for IR

Atmospheric transparency in IR

Telescope cost scaling

Let's consider another wavelength range...

21cm intensity mapping experiments (0.8 < z < 2.6)

CHIME (Canada)

TIANLAI (China)

HIRAX (S. Africa)

PAON-4 (France)

Low-cost dish construction methods

BMX dish

Composite dish construction

CHORD

6m

Notional PUMA dish

FEE box

Galaxy statistics and redshift range vs. optical galaxy surveys

Length of bar = redshift range Area of bar = effective galaxy number

Instrument	Survey duration	# Galaxies observed	Redshift accuracy	Redshift range
LSST	10 yrs	4B	Modest	0.3 < z < 3
DESI	5 yrs	35M	High	0 < z < 3
PUMA	5 yrs	2.9B effective	High	0.3 < z < 6

Speed of LSST, accuracy of DESI

Instrument design: radio interferometer (large-N)

Many baselines (N_{dish} = /32000) PUMA 32K

> Every pair of stations provides a baseline $N_{baselines} = N_{dish}(Ndish - 1)/2$ Each baseline probes a corresponding spatial frequency

Instrument design: radio interferometer (polychromatic)

One baseline $(N_{dish} = 2)$

ADC FFT AMP / X ADC 🖊 FFT AMP "F-engine" "X-engine"

Interference fringes based on path length difference between 2 stations

- Collecting area $\pi D^2 N_{dish}/4$
- Angular resolution λ**/b**
- Angular field of view λ/D

Full array network

Switch and X-engine details

By the numbers...

DATA

	PUMA-5K	PUMA-32K	
Raw data rate	240	1500	Tbit/s
Real-time computation	15	100	PFLOP
Output data rate	13	82	GB/s
Data volume	0.9	5.7	PB/day
Power *	.23	1.5	MW

DOLLARS

		PUN	IA-5K		PUMA-32K									
Phase	Years	U.S. Federal (\$M)	Non- federal (\$M)	Total (\$M)	Years	U.S. Federal (\$M)	Non- federal (\$M)	Total (\$M)						
R&D	FY 21-24	15.0	5.0	30.0	FY 21-25	26.3	8.8	35.0						
Final design and site acquisition	FY 25-26	8.0	2.0	10.0	FY 26-27	8.0	2.0	10.0						
Construction and commissioning	FY 27-30	55.9	2.9	58.8	FY 28-33	354.7	18.7	373.4						
Operations	FY 34-30	15.9	1.8	17.7	FY 34-38	100.8	11.2	112.0						
Science	FY 31-35	12.4	4.1	16.5	FY35-38	78.4	26.1	104.5						
TOTAL	FY 21-35	107.1	15.8	133.0	FY 21-38	568.2	66.8	634.9						

*no ASIC

DEVELOPMENT TIMELINE

PUMA-5K															
	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32	FY33	FY34	FY35
Research and Development					48 mor	ths Oct.	2020 - Sept. 2024								
Final design and site selection						24 months Oct. 2024 - Sept. 2026									
Construction and commissioning							48 months Oct. 2026 - Sept. 2030				30				
Operations							60 months starting Oct. 2030				0				

PUMA-32K																		
	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32	FY33	FY34	FY35	FY36	FY37	FY38
Research and Development					60 months Oct. 2020 - Sept. 2025													
Final design and site selection								24 mon	ths Oct.	2025 - 5	Sept 202	7						
Construction and commissioning						72 months Oct 2027 - Sept 2033												
Operations					60 months starting Oct. 2030				D									

SUMMARY

- 21cm intensity mapping is a new, cost-efficient observational technique that is <u>complementary to optical and CMB</u> surveys.
- It opens the largely unexplored redshift range 2.5 < z < 6 where <u>beyond-ACDM</u> physics can be studied dynamic DE, modified GR, inflationary relic signatures.
- Leverages industry advances (wireless, AI) and requires no specialized detector environments (cryo, radiation).
- Research needs center on <u>DAQ architectures</u> (with 2030-era electronics), and on <u>calibration methods</u>, including sub-picosecond phase synchronization.
- BMX can serve as an early pathfinder to a future large project such as PUMA
 - well-matched to HEP expertise and is <u>synergistic with many emerging trends in EF and IF</u> <u>electronics</u>.