

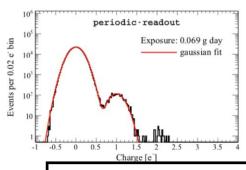
A multi-channel cryogenic low-noise skipper-CCD readout ASIC

Troy England¹, Fabricio Alcalde Bessia², Hongzhi Sun¹, Leandro Stefanazzi¹, Davide Braga¹, Shaorui Li¹, Juan Estrada¹, Farah Fahim¹ ¹Fermi National Accelerator Laboratory

²Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Instituto Balseiro

Outline

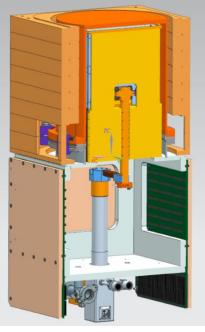
- Skipper CCDs used for Dark Matter
- Midna ASIC for Skipper CCD Readout
- Midna Architecture and Simulation Results
- Future Development



Skipper-CCD for Dark Matter Search

FNAL / MINOS

Phys. Rev. Lett. 122, 161801 (2019)

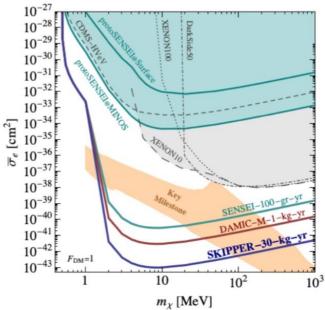

SNOLAB

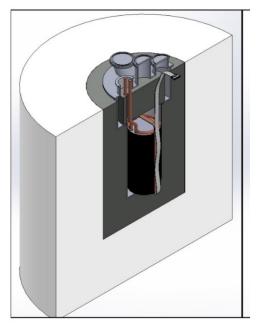
During December 2019 we installed the first skipper-CCD at SNOLAB. (2.5 g active mass)

Next: 24 Gigapixel digital camera for dark matter! Cooling, readout, packaging and testing of the required <u>4000 skipper-</u> <u>CCD sensors require engineering solutions that are not available yet for</u> <u>scientific CCDs.</u>

SENSEI 100

Design for the 100g experiment is done, and orders for parts have been placed.

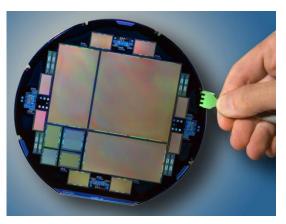

Multi skipper-CCD modules for SENSEI-100 currently being tested with great success.


Oscura 4 year Research and Development Effort

"DOE Dark matter New Initiatives" FNAL, LBNL, PNNL, U. Chicago, U. Washington, Stony Brook University.

Fermilab is leading the effort to develop the a skipper-CCD dark matter detector with active mass of 10 kg of Silicon.

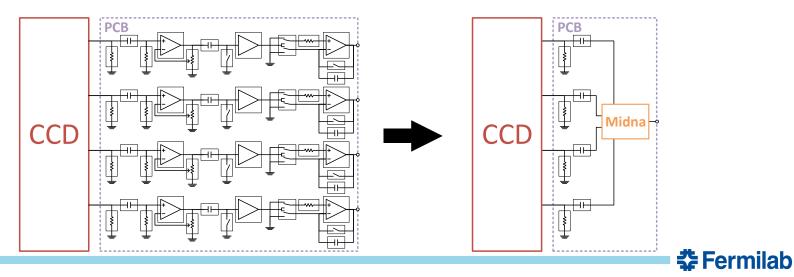
Taking the skipper-CCDs to their full potential as dark matter detectors.

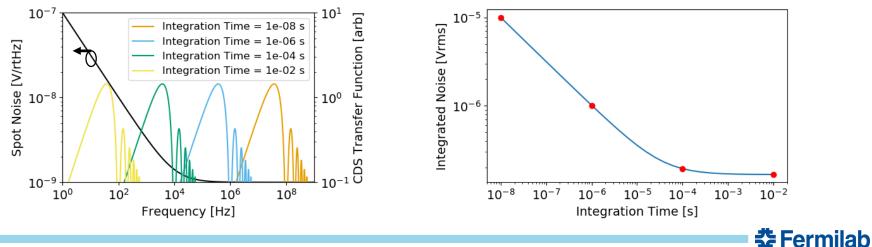


Fabrication of skipper-CCDs is needs to be adapted to the changes in the semiconductor industry. We have identified new industrial partners for this, and will be testing them over the next year.

24 Gigapixel digital camera for dark matter!

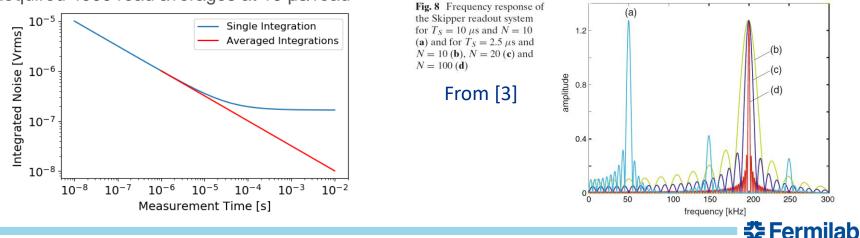
Cooling, readout, packaging and testing of the required <u>4000 skipper-CCD sensors require</u> engineering solutions that are not available yet for scientific CCDs.


Radiation background required is ~10 lower than state of the art experiments.


An ASIC to Support Scaling to 28 Gigapixels, MIDNA

- MIDNA is a prototype cryogenic low-noise skipper-CCD readout ASIC
- It is an enabling technology for the OSCURA dark matter detection project
- Integrates multiple readout channels onto a single chip, replacing numerous costly PCB components and saving valuable physical space
- Operates at 120 Kelvin where COTS devices are not guaranteed to specification

CCDs for Low Noise Imaging


- CCDs have long been the main choice for low noise scientific imaging
- The low noise has been enabled by a combination of integrating the readout for long periods and using correlated double sampling (CDS) [1]
 - Unfortunately, 1/f noise means that there was a limit to the effectiveness of this approach
 - Long integration moved the content of interest to lower and lower frequencies
 - The spreading out of the CDS sampling points reduced the filtering of flicker noise

[1] White et al., "Characterization of Surface Channel CCD Image Arrays at Low Light Levels."

Skipper CCDs for Exceptional Low Noise for Dark Matter Search

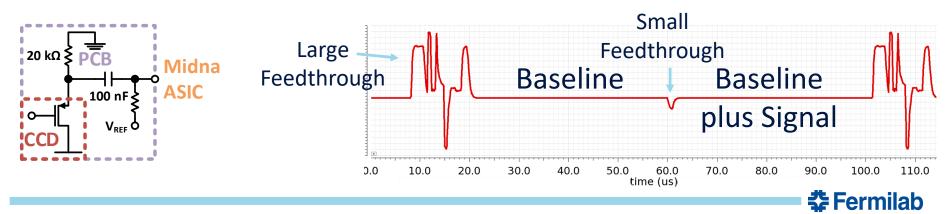
- Skipper CCDs and similar technologies enabled the non-destructive readout of the same pixel many times [2]
 - The noise can be lowered by averaging many shorter reads rather than one long read
 - It continues the decreasing noise trend with longer measurement times
- There are still limits to this approach
 - Leakage in the charge transport in the CCD (low)
 - Speed of the various readout stages and clocking
- A skipper CCD has demonstrated the lowest ever, 0.068 e⁻_{rms}, noise floor in CCDs [3]
 - Required 4000 read averages at 10 µs/read

[2] Janesick, J.R., et al. "New advancements in charge-coupled device technology: sub-electron noise and 4096×4096 pixel CCDs.
[3] Fernández Moroni et al., "Sub-Electron Readout Noise in a Skipper CCD Fabricated on High Resistivity Silicon."

Midna Prototype Specifications

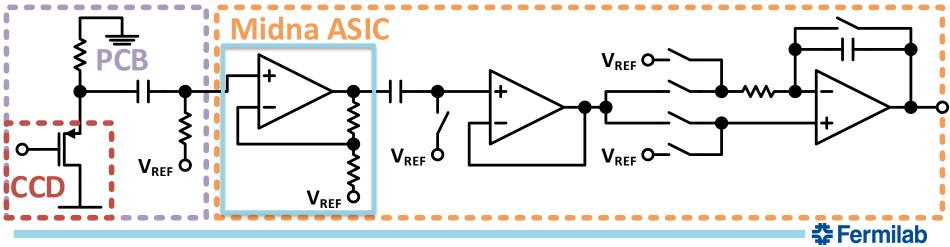
- Both the CCD and the ASIC will be operated at 120 Kelvin
- Fermilab possesses models for 84 Kelvin for LP CMOS 65 nm transistors
 - The ASIC will be fully verified at 84 Kelvin expecting only minor differences at 120 Kelvin
 - Only verifying for basic functionality at room temperature
- Uses 2.5 V transistors for voltage room
- The ASIC input referred noise must be less than one third of the CCD output noise
 - Most difficult and constraining requirement
- 4 channels on prototype
- 3000 e⁻ dynamic range
- 1 µs min. integration time
- < 6 nV/√Hz input referred noise at 10 kHz

Skipper CCD				
Variable	Value	Unit		
Gain	3	µV/e ⁻		
Dynamic range	3000	e		
White Noise	18e-9	V/√Hz		
1/f Noise at 1 Hz	3.95e-6	V/√Hz		
1/f Noise exponent	1.3	Arb.		

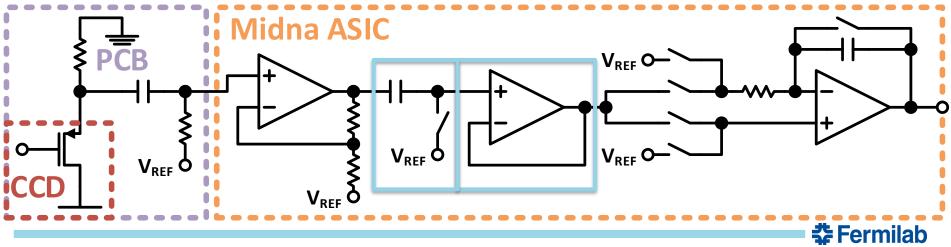

Midna ASIC Specifications

Min	Target	Мах	Unit
1		3000	e
3		9000	μV
1	10		μs
84	84	120	К
	1/3		CCD
	50		μs
	50		ns
-20		-15	V
	1 3 1 84	1 3 1 10 84 84 1/3 50 50	1 3000 3 9000 1 10 84 84 1/3 120 50 50 50 50

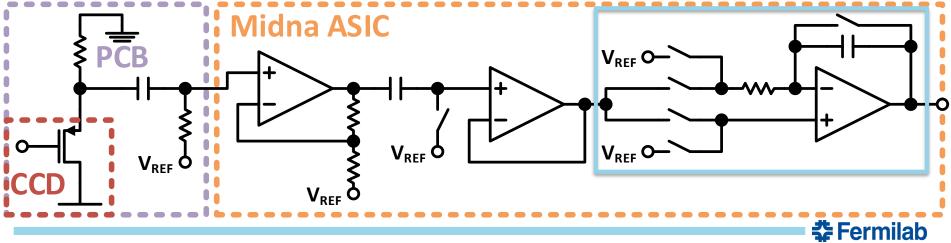
Skipper CCD Output Characteristics


- The output of the Skipper CCD is a buried-channel source-follower pFET driving voltage levels
- The transconductance is approximately 200 μ S, 4 k Ω output impedance
- The load resistance of 20 kΩ provides the best speed vs. noise trade-off
- The output transient consists of a repeating pattern of large clock feedthrough, the baseline level, small feedthrough, and the baseline plus signal level
- The transient resides on a DC level near -20 V, so it will be AC coupled

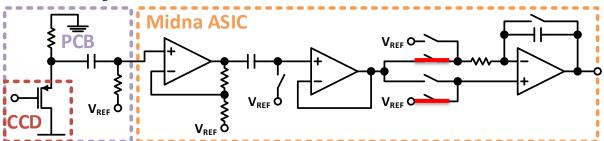
Preamplifier

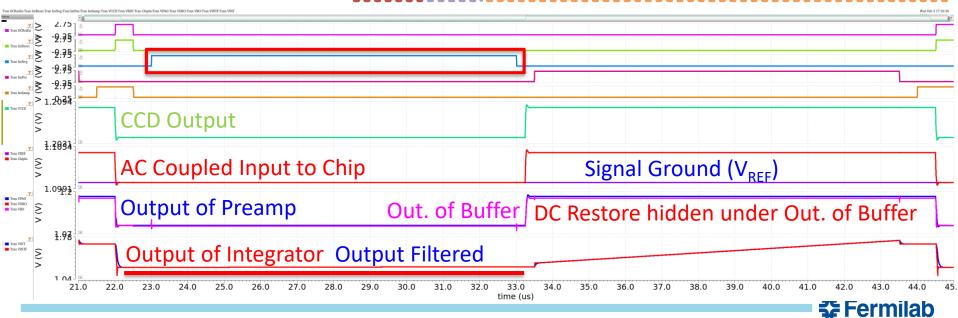

- Largely responsible for noise performance
- Requires large devices and large currents
- It must drive the 100 pF DC restore capacitor and settle within 50 ns
- Uses class AB push-pull output
- Selectable gain of 10 V/V or 20 V/V

Simulated Noise Characteristics: 470 nV/rHz @ 1 Hz 2.04 nV/rHz @ 1 MHz

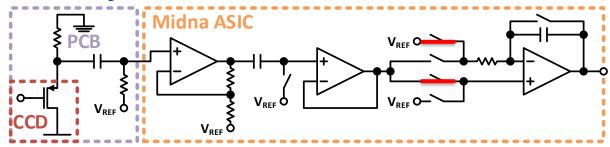

DC Restore and Buffer

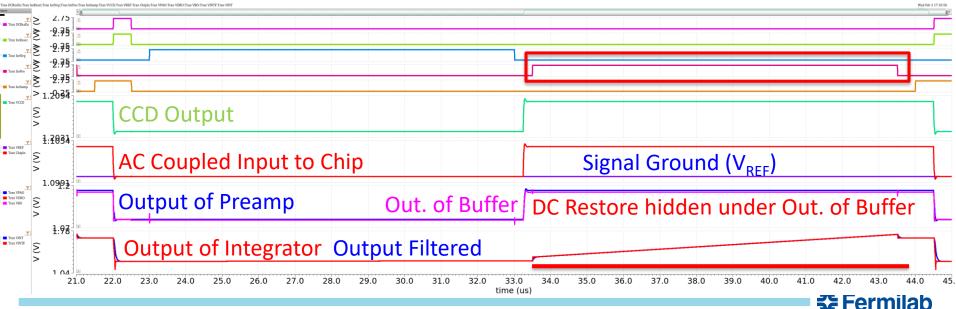
- DC Restore ensures the baseline does not saturate the integrator
- Buffer provides the drive necessary for the integrator
 - DC Restore cannot provide DC current


Integrator


- A switching multi-slope integrator is used to implement CDS and filtering
- It has two gain settings using a switchable resistor
- Four phases: reset, inverting integration, non-inverting integration, and sample

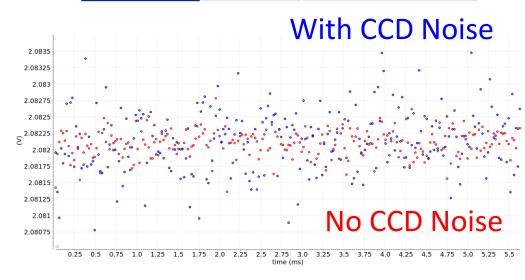
Channel Transient Functionality Simulation


- At 23 µs, Negative Integration of the baseline starts and lasts for 10 µs
- Because the DC Restore shifted the output of the Buffer to V_{REF} there is only a small integration value equivalent to the offsets of the DC Restore, Buffer, and Integrator



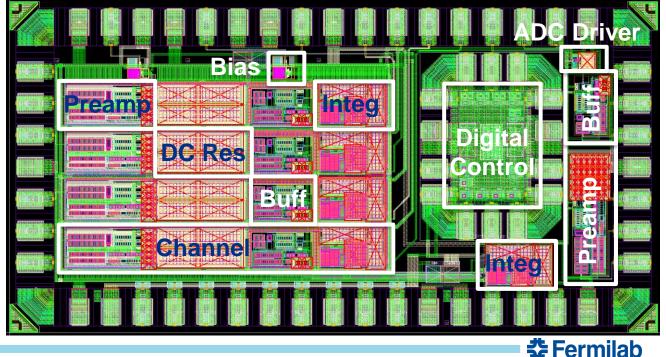
Channel Transient Functionality Simulation

- At 33.5 µs, Positive Integration starts
- The most voltage space is used by the integrator in this phase



Full Channel Parasitic Extracted Transient Noise Simulation

- 256 successive reads in transient noise analysis
 - Noise generated up to 100 MHz
- Output mathematically sampled during third phase of the integrator
- Standard deviation of results gives the integrated output noise
- The noise is referred back using the average output voltage value minus the reference divided by the input height and the CCD sensitivity, 3 µV/e-
- With similar measurement time, this would cut the record noise result in half


Noise		Input Referred [e- _{rms}]
No CCD	198.8	0.61
With CCD	466.5	1.43

Chip Screenshot and Tape Out Structures

- Each channel is about 150 µm x 1 mm
- Chip is 2 mm x 1 mm
- Taped out on March 12
- Four analog channels
- Standalone preamp
- Standalone buffer
- Standalone integrator
- Standalone ADC driver
- Bias mirroring
- Digital control

Midna Performance Summary

- Sub-e⁻ read noise from channel at 10 µs integration times
- < 6 nV/ \sqrt{Hz} input referred noise at 10 kHz
- 3000 e⁻ dynamic range
- High linearity, $R^2-1 = -8.5e-7$
- Cryogenic operation down to 84 Kelvin
- Selectable gain:
 - 54.4, 81.6, **108.8**, 163.2
 - Output voltage swing divided by voltage step height
- 4.2 mW per channel

Future Development for Midna

- Supporting 4000 CCDs will require even more on-chip features
- Grow to many more channels to follow the CCD, up to 64
 - Currently limited by cost of readout
- Integrated analog-to-digital converter (ADC)
 - 12 bit, 500 kS/s
- Digital processing of data
 - The ADC combined with on-chip memory enables many averaged reads on chip
 - Improves noise, power, and complexity compared to analog solutions

Thanks!

