Speaker
Description
Semiconductor detectors, particularity those using CCD or Neganov-Trofimov-Luke (NTL) assisted phonon-mediated techniques are the technologies of choice for the experiments seeking rare and very low energy interactions such as low mass dark matter or coherent elastic neutrino nucleus scattering (CE$\nu$NS). The ultimate sensitivity reach of the current detector design is hindered by a stochastic carrier leakage that seems to be primarily due to the particular detector contact architecture at use. We will present a new semiconductor bias and readout design wherein the bias electrodes do not have a physical contact with the substrate. We will present recent progress toward single-carrier excitation in large mass Si or Ge of $\sim$100 g using this novel design. We will also present the application of this novel technique for fast and non-pervasive prescreening of semiconductor crystals for defect and impurity concentration evaluation.