STOPGAP

a Time-of-Flight Extension for the TOP Belle II Barrel PID System

O. Hartbrich1, U. Tamponi2, G. S. Varner1

1University of Hawaii at Manoa
2INFN Torino

CPAD Workshop 2021
Stony Brook, NY
03/22/2021
Fast Timing in High Energy Physics

- Ongoing upgrades plan for fast (30-50ps single MIP) timing layers
 - ATLAS endcap, CMS barrel + endcap for pileup suppression
 - LHCb for time-of-flight pion/kaon separation
 - Higgs factory detectors study timing in Particle Flow reconstructions

- The future of HEP instrumentation is timing!
 - Ideally: thin 4D tracking detectors with large areas

- Belle II also interest in fast timing technologies
 - Time-of-flight particle identification
 - Timing layer(s) in tracking upgrade and as track trigger
Fast MIP Timing Sensors

- State-of-the-art for HL-LHC upgrades: ~30ps for MIPs
- LGAD is expensive, ~mm2 pixels, only 95% efficient
- LYSO+SiPM is thick, limited to ~cm2 granularity
Fast MIP Timing Sensors

- State-of-the-art for HL-LHC upgrades: ~30ps for MIPs
- LGAD is expensive, ~mm2 pixels, only 95% efficient
- LYSO+SiPM is thick, limited to ~cm2 granularity
- MAPS are thin, high granularity, cost effective - but not currently competitive in time resolution
Establishing Fast MAPS

• <100ps time resolution achievable without internal amplification by integrating fast, low noise amplifier and threshold comparator into each pixel
 • "it’s possible"
 – L. Paolozzi et al.: 2020 JINST 15 P11025
 • "it works with small pixels"
 – Y. Değerli et al.: 2020 JINST 15 P06011
 • "progress with ~mm² pixels"

• Established Fast MAPS would be a game changer for fast HEP sensors
 – Feasible option for fully integrated large area 4D tracking detectors

• Every new technology needs a suitable breakthrough application
STOPGAP

• Belle II TOP PID system is **not hermetic**
 - 6% of tracks miss active volume, 3% degraded from edge effects
STOPGAP

• Belle II TOP PID system is **not hermetic**
 - 6% of tracks miss active volume, 3% degraded from edge effects

• Our proposal: Supplemental TOP Gap Instrumentation (STOPGAP) with time-of-flight sensors to **recover PID hermeticity**
 - Expect improvements in flavour tagging & full event reconstruction efficiency
Time-of-flight PID in Belle II

- Detailed study on STOPGAP based on Time-of-Flight: requires around **50-70ps** MIP time resolution sensors
 - Based on full Belle II simulation and reconstruction of $B\bar{B}$ events
- TOP never reaches 100% efficiency/0% mis-ID

![Graph showing PID efficiency vs momentum in GeV/c]
STOPGAP: a Fast MAPS Demonstrator

- **Timing is most important** for STOPGAP, other requirements are “tame”
 - Ideal initial application for fast MAPS
- Build small scale STOPGAP prototype module and **install into Belle II**
 - Few cm² is enough, could contain more than one sensor technology, “integrated external” readout (e.g. CERN picoTDC or similar)
 - Belle II endcap regions have reasonable accessibility during most summer shutdowns
- Demonstrate fast MAPS timing performance in **“real deal” conditions**
- Aim for installation of full STOPGAP during extensive Belle II + SuperKEKB shutdown expected in 2026(+x)?
 - Fast timing with MAPS is also of great interest for a timing layer in a possible Belle II silicon tracking upgrade
Summary

- All future HEP experiments will incorporate fast timing in some way
 - Existing technologies fill individual niche requirements
- Novel fast MAPS sensors promise to reach <<100ps MIP timing
 - Cost effective, thin, radiation hard process, ...
 - First attempts at such sensor are very encouraging
- Instrumenting TOP quartz gaps will improve barrel PID coverage by 6(+3)%
 - Expect 50-70ps single MIP timing sensors to do very well, no strong further requirements
- STOPGAP is an exciting opportunity to establish fast timing CMOS sensors in the landscape of HEP instrumentation
 - Opportunities to install a demonstrator module in Belle II
 - Interest in Belle II also for tracking timing layer at lower radius
- A step towards monolithic, large area 4D tracking detectors
Backup
MC Study: π/K efficiencies/mis-ID rates

- Detailed study on STOPGAP based on Time-of-Flight: feasible with 50-70ps MIP time resolution sensors
 - Based full Belle II simulation and reconstruction of $B\bar{B}$ events
- TOP never reaches 100% efficiency/0% mis-ID
Track Trigger in Belle II Tracking Upgrade

- Current Belle II tracking system might suffer at full luminosity due to beam backgrounds, several upgrade plans under discussion
 - Most concepts propose to increase the inner radius of the outer gas tracking system → need to recover track triggering performance and low momentum from missing dE/dx
- Toy study: a double timing layer with (very) moderate requirements can reliably provide track trigger information from time coincidence alone
 - Also provides excellent pion/kaon separation for $p_T < 1\text{GeV}$
A True Double Timing Layer

- Instead of double layer, two single layers at 250mm, 450mm
 - Track charge, momentum, Z reconstruction → IP vertex cut
 - Improved ToF PID down to 50MeV
Fast MAPS for DESY-II Beam Monitoring

- DESY-II injections yield stray charges 2ns before/after main bunch
 - Fast MAPS timing can easily distinguish between bunches → Automatic measurement during first STOPGAP test beam campaigns at DESY

- Limited by statistics: test beam intensity and sensor readout speed
 - Measuring side bunch charges for each injection cycle might become possible for the first time

- Important for DESY-IV: injections into PETRA-IV should be clean from side-bunches