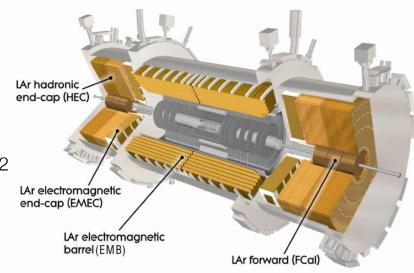
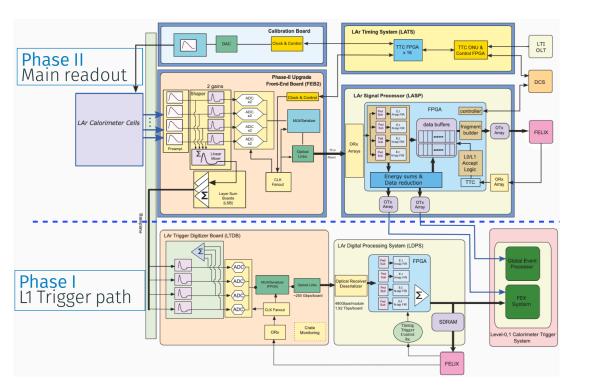


Design and Integration of the Readout Electronics for ATLAS Liquid Argon Calorimeter for HL-LHC

M. Benoit, F. Bonini, H. Chen, K. Chen, F. Lanni, H. Liu, D. Matakias, M. Pleier, S. Tang, <u>H. Xu</u>, W. Yin, E. Zhivun

3/18/2021




- HL-LHC: very large pileup, radiation tolerance, new ATLAS trigger scheme etc.
- ATLAS Phase 1 upgrade installation is being finalized. The Phase 2 upgrade installation will happen during LS3 (from 2025) of LHC

ATLAS Liquid Argon Calorimeters

- ◆ Four parts of the LAr Calorimeter: HEC, EMEC, EMB, FCal
 - Active material: LAr
 - Passive material: lead (EMEC, EMB), copper (HEC), copper & tungsten (FCal)
- A total of 182,468 cells
- Record energies in a range from ~ 50 MeV to ~ 3 TeV per cell. Resolution: $\sigma E/E = 10\%/sqrt(E) \oplus 0.7\%$ out to $|\eta| < 3.2$
- LAr Calorimeters themselves are expected to operate reliably during the HL-LHC period
- LAr Readout Electronics need to be replaced
 - Meet new ATLAS TDAQ requirements
 - Improved radiation hardness
 - Two-gain system will improve systematics on $H \rightarrow \gamma \gamma$ mass

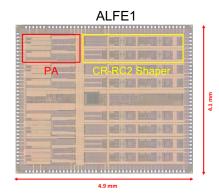
LAr Phase II Readout Electronics Architecture

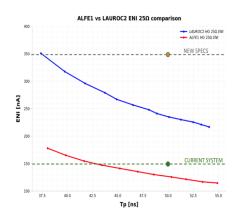
Phase I upgrade

- LAr Trigger Digitizer Boards (LTDB)
- LAr Digital Processing Blade (LDPB)
- 1524 FEB2 in FEC (replace FEB)
 - PA/Shaper ASIC (16b)
 - ADC ASIC (14 bit, 40 MSPS)
 - IpGBT/VTRx+ optical link

~ 124 New Calibration Board in FEC (replace the current Calibration Board)

- ASICs for HF switch and DAC
- LAr Signal Processor to replace the ROD
 - ~ 380 ATCA-based LASP and sRTM (smart Rear Transition Module)
 - Readout the FEB2
- LATs LAr Timing System
 - ~ 20 LATOURNETT (LAr Timing trigger cOntrol distribUtion and fRoNt End moniToring/configuraTion) is being developed
 - Distribute and received control, monitoring and clock to/from FEB2 and calibration board

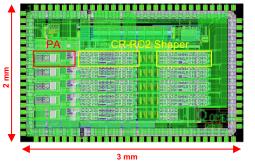

PA/Shaper ASIC

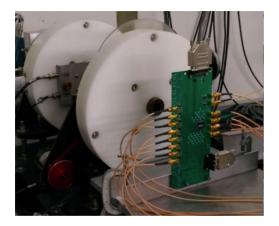

- ASIC requirements for EM and FCAL
 - 2 designs in CMOS 130nm evaluated: LAUROC2 and ALFE1
 - Analog processing of signals on 4 channels: amplification, CR-RC2 shaping, split on 2 gain scales
 - > 16-bit dynamic range, 4-ch trigger sum output

ALFE1

- Zin: $25\Omega \pm 5\%$ to 50MHz, $50\Omega \pm 5\%$ up to 30 MHz
- INL: < ± 0.1%
- 25/50 Ω HG ENI (@1.5nF/330pF): 135 nA / 45 nA
- No degradation under TID test up to 180 kRad

LAr has decided to choose ALFE2 as baseline prototype




PA/Shaper ASIC (2)

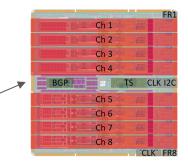
♦ LAUROC2

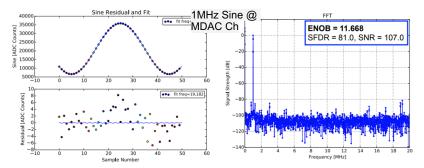
- I2C and trigger sum integrated
- Zin: $25 \Omega \pm 15\%$, $50\Omega \pm 5\%$ up to 20 MHz
- INL: < ± 0.2%
- 25/50 Ω HG ENI (@1.5nF/330pF): 270 nA / 75 nA
- TID and SEE tests are good
- Feature complete design
- HPS1 ASIC for HEC
 - HEC Pre-Shaper and Shaper: based on the LAUROC1 shaper design
 - First pre-prototype
 - Complete performance characterization ongoing
 - Programmability, waveforms, linearity ok
 - Noise and cross-talk will be improved for the next iteration
 - Irradiation for TID at TRIUMF
 - No performance degradation observed

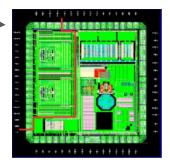
ADC ASICs

Requirements

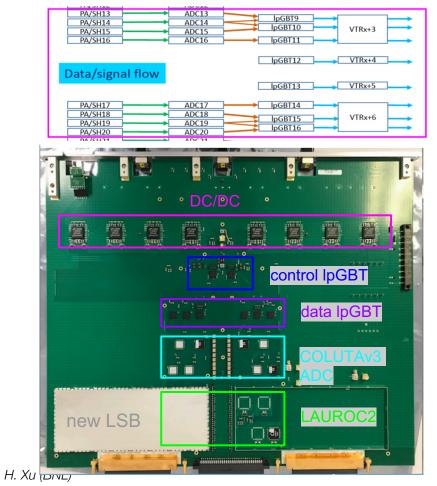
- 14-bit dynamic range, >11 bit ENOB
- 40 MSPS sampling rate
- Low power, radiation tolerant up to 180 kRad
- ePort data interface to IpGBT

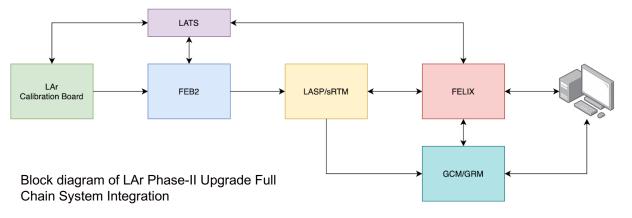

COLUTA ADC (TSMC 65 nm CMOS)

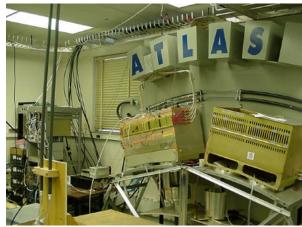

- COLUTAv3: feature complete design
- 8 channels : 4 DRE + 4 MDAC
- Preliminary COLUTAv3 results
 - Dynamic range and ENOB well within specs
 - Coherent noise < 0.2 LSB, cross-talk < 0.1%
 - Long-term stability tests performed


Commercial IP (of ADESTO/S3) ASIC v1.2

- Alternate use of ADC IP core developed for CMS ECAL
- Chips fully functional
- Performance seems on par with previous iteration
- Detailed caracterisation to be performed


LAr has decided to choose COLUTA4 as baseline prototype

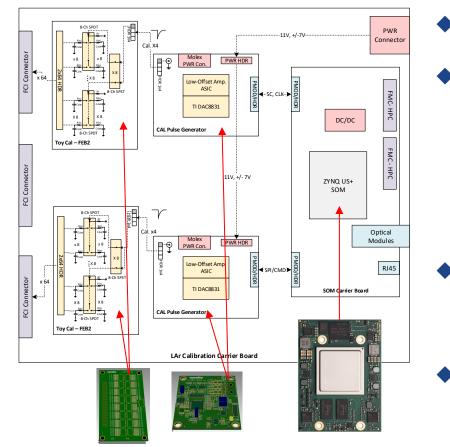

FEB2 Prototype Boards



Three development stages

- Analog Testboard (2019)
 - 0 2 (LAUROC1 PA/S + COLUTAv2 ADC) + IpGBT
 - Verified full readout chain PA/S + ADC + optical data links
- Slice Testboard (2020, now being tested)
 - 8 (LAUROC2 PA/S + COLUTAv3 ADC + lpGBT) chips, 32 LAr channels available
 - Aim to demonstrate multi-channel performance, bidirectional control links
- Full 128-ch FEB2 Prototype (2021~2022)
 - 22 DAQ links @ 10.24 Gbps
- All ASICs work well on the slice test board, uplink data path verified
- Now integrate with FELIX for high capacity readout, then extensive analog testing

System Integration



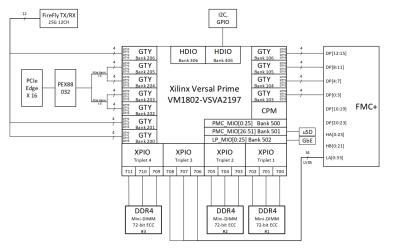
Picture of the mockup at BNL

- To validate the system design before the production
- To use the current LAr mockup at BNL with additional developments
 - The mockup at BNL Physics Department reproduces, with high fidelity, the mechanical and electrical properties of the ATLAS LAr calorimeter.
 - It was used to integrate the ATLAS LAr electronics in original construction and the LTDB for Phase I.

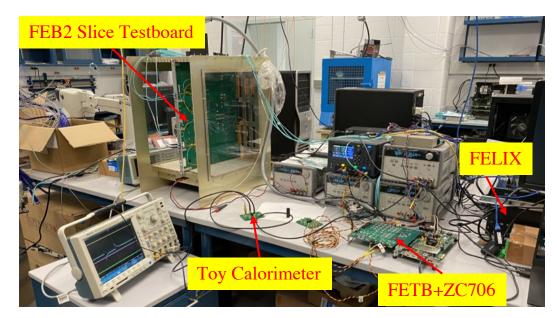
Calibration Test board

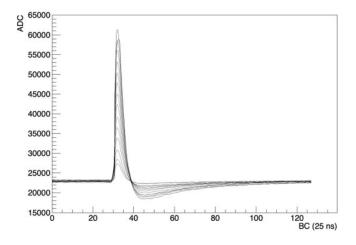
Calibration test board will be used before the Calibration prototype board becomes available.
A Carrier Board fitting the FEC has been designed, to integrate:

- The Toy Calorimeter modules (64ch)
- The Pulse Generator module
- FPGA Evaluation board to:
 - Receive the clock and trigger from the FELIX system
 - Control the pulser DAC
- The Slice Test Board/FEB2 software can control the FPGA module via the optical link or a parallel GbE Connection to perform injection test and scan with the Slice Test Board and FEB2
- The Carrier, Toy Calorimeter, and Pulse Generator are currently in production


GCM and GRM

- Global Common Module (GCM) is an ATCA-based module and Generic Rear transition Module (GRM) have been developed to receive and process the data from the front-end electronics.
- GCM/GRM will be used for system integration tests with LASP/sRTM.
- GCM
 - Two XCVU13P and One XCZU19EG
 - o QSFP/UART/SD/DDR4
 - o GbE/I2C/SPI
 - FireFly (18 pairs) running @25Gbps
 - 8 pairs for each VU13P FPGA
 - 1 pair shared with two VU13P for GRM
 - 1 pair for ZYNQMP
- GRM
 - One VM1802 versal FPGA
 - FireFly (4 pairs) running @25Gbps


FELIX for HL-LHC


- The FELIX will be used for system integration tests for LAr+TDAQ system
- Xilinx Versal FPGA XCVM1802
- PCIe Gen4 x 16, up to 256 GT/s
 - 16 x GTY links (16 Gbps, CCIX not supported)
 - PCIe Gen4 switch for dual x8 to x16 conversion
- 12 x FE-Links
 - One pair of Samtec Firefly 25G 12-Ch module
- ▶ 3 x Mini-UDIMM DDR4 Modules w/ ECC
 - Accessible by both PL and PS through NoC
 - FMC + connector for mezzanine card
 - ATLAS/DUNE variant
 - 34 x differential pairs from XPIO banks
 - 16 x GTY links

System Integration for FEB2 Slice Testboard

H. Xu (BNL)

Preliminary result for LAr pulse injections with different amplitude

Summary

- Baseline designs of ASICs are chosen.
 - ALFE2 has been chosen as PA/Shaper baseline.
 - COLUTA4 has been chosen as ADC baseline.
- Prototype boards design are proceeding.
- The system integration is a critical effort to validate the system design before the production.