

Development of Highly Granular Scintillator Strip Electromagnetic Calorimeter

Naoki Tsuji^a, M. Dong^{bc}, J. Liu^{bd}, Y. Liu^{bc}, Y. Niu^{bd}, H. Ono^e, W. Ootani^f, T. Takeshita^g, Z. Wang^{bc}, Y. Zhang^{bd}

^aThe University of Tokyo ^bState Key Laboratory of Particle Detection and Electronics ^cInstitute of High Energy Physics ^dUniversity of Science and Technology of China ^eNippon Dental University ^fICEPP, the University of Tokyo ^gShinshu University

CPAD Instrumentation Frontier Workshop2021, 18 Mar. 2021

LOI for Snowmass 2021

LOI on highly granular Sc-ECAL for Snowmass 2021

Development of Highly Granular Scintillator Strip Electromagnetic Calorimeter

M. Dong^{ab}, J. Liu^{ac}, Y. Liu^{ab}, H. Ono^d, W. Ootani^e, Z. Shen^{ac}, T. Takeshita^f, Z. Wang^{ab}, Y. Zhang^{ac}

^aState Key Laboratory of Particle Detection and Electronics, China ^bInstitute of High Energy Physics, Chinese Academy of Sciences, China ^cUniversity of Science and Technology of China, China ^dNippon Dental University, Japan ^eICEPP, University of Tokyo, Japan ^fShinshu University, Japan

August 30, 2020

Abstract

Highly granular electromagnetic calorimeter based on scintillator strip with SiPM readout (Sc-ECAL) is under development in the framework of the CALICE collaboration for future electron-positron colliders such as ILC and CEPC. After the validation of the concept with the physics prototype, a technological prototype with full layers is being constructed to demonstrate the performance of Sc-ECAL with more realistic technical implementation. The status and prospects of the R&D of Sc-ECAL are briefly described.

2 /26

Contents

Introduction

- Future electron positron collider (ILC, CEPC)
- Scintillator Electromagnetic calorimeter (Sc-ECAL)

R&D status

- Photosensor
- Scintillator strip design and material
- Electronics
- Large technological prototype
 - Construction
 - Cosmic-ray test
 - Performance check and calibration
- Summary & prospects

Contents

Introduction

- Future electron positron collider (ILC, CEPC)
- Scintillator Electromagnetic calorimeter (Sc-ECAL)

R&D status

- Photosensor
- Scintillator strip design and material
- Electronics
- Large technological prototype
 - Construction
 - Cosmic-ray test
 - Performance check and calibration

Summary & prospects

International linear Collider (ILC)

- Future high energy frontier machine
 - Electron-positron linear collider
 - Ecm : 250-500 GeV (extendable to 1 TeV)
- Precise measurements in low background environment
- International Large Detector (ILD)
 - vertex detector, central tracker, EM calorimeter, hadron caloriemeter, and muon tracker.
- Particle Flow Algorithm (PFA)
 - Each particle is detected by the best suited detectors.
 - Improved jet energy resolution

Circular Electron Positron Collider (CEPC)

Higgs factory

- Electron positron circular collider
- Ecm : 240 GeV
- Precise measurement of the Higgs (and Z) boson
- Discovery machine for BSM new physics
 - Upgradable to pp collision with Ecm : 50-100 TeV

Detectors

- Baseline concept is similar to ILD
 - Tracker, TPC, ECAL, HCAL, muon detector
- Adopt PFA for reconstruction algorithm

Performance requirements

Sc-ECAL

- Scintillator Electromagnetic CALorimeter (Sc-ECAL)
 - Technology option of EM calorimeter for ILC and CEPC
- Based on scintillator strips readout by Silicon PhotoMultiplier (SiPM)
 - 5 × 45 × 2 mm³ scintillator strip
- Virtual segmentation : $5 \times 5 \text{ mm}^2$ with strips in x-y configuration
 - # readout channels significantly reduced ($10^8 \rightarrow 10^7$)
 →Low cost
 - Retaining performance comparable to real 5 × 5 mm² segmentation
- Timing resolution < 1 ns</p>

Contents

Introduction

- Future electron positron collider (ILC, CEPC)
- Scintillator Electromagnetic calorimeter (Sc-ECAL)

R&D status

- Photosensor
- Scintillator strip design and material
- Electronics
- Large technological prototype
 - Construction
 - Cosmic-ray test
 - Performance check and calibration

Summary & prospects

Small-pixel SiPM

- Silicon PhotoMultiplier (SiPM)
 - Made up of multiple APD pixels operated in Geiger mode
 - Excellent photon-counting capability
- Requirement of small-pixel SiPM for large dynamic range
- \odot Comparative study b/w 10 μ m-pixel and 15 μ m-pixel SiPM
 - Developed detection layers with both types
- New small-pixel SiPM with trench
 - Low crosstalk
 - Low operation voltage
 - No reduction of fill factor
- 2 detection layers with new SiPM tested

Crosstalk : IR photons from avalanche in fired pixel can trigger adjacent pixels

Hamamatsu Photonics K.K.,

Model number	S12571-010P	S12571-015P	S14160-1315PS
Photosensitive area	1 mm²	1 mm²	1.3 mm ²
Pixel size	10 µm	15 µm	15 μm
Number of pixels	10000	4489	7296
PDE	10%	25%	32%
Gain	1.35×10 ⁵	2.3×10 ⁵	3.6×10 ⁵
Crosstalk Probability	~5%	~15%	Less than 1%
Fill factor	33%	53%	49%

Trench : Separation between adjacent pixels in order to reduce crosstalk

Commercial PVT scintillator

SiPM Coupling optimization

- Three coupling models investigated
 - side-end, bottom-end and bottom-center
- Uniformity of light yield along the strip is important to the ECAL energy resolution
- Bottom-center coupling gives the best uniformity with additional advantages:
 - Avoiding the dead area between scintillators introducing by SiPMs
 - Simplifying sensitive layer assembly
 - Allowing for large-size SiPM
- Adopt bottom-center coupling as default design of detection layer

Scintillator material

- Polystyrene-based scintillator produced by injection moulding
 - Suitable for large-scale production
 - Lower light yield compared to commercial PVT scintillator

Performance

- Production of large 2mm-thick plate by injection moulding
 machining (strip shape + cavity)
- Light yield by injection moulding is lower by ~20% compared to PVT
 - Still sufficient light yield
- Test production using dedicated mould
 - Obtained mould with strips/tiles in different shapes
 - Light yield test in preparation

Dedicated mould for Sc-CAL

Naoki Tsuji, The University of Tokyo

ECAL Base Unit (EBU)

Fully integrated electronics for high granularity

- 210 channels readout with 6 × ASIC (SPIROC2E) chips divided into 5 rows and 42 columns
- Using S12571-010P (10 µm-pixel) / S12571-015P (15 µm-pixel) SiPMs
- Electronics calibration and SiPM operation voltage adjustment realized
- LED calibration and temperature monitoring circuits
- Total layer: 6 mm / layer
- Scintillator strips were wrapped with ESR film and assembled on EBU boards by Shanghai Institute of Ceramic

Contents

Introduction

- Future electron positron collider (ILC, CEPC)
- Scintillator Electromagnetic calorimeter (Sc-ECAL)

R&D status

- Photosensor
- Scintillator strip design and material
- Electronics
- Large technological prototype
 - Construction
 - Cosmic-ray test
 - Performance check and calibration

Summary & prospects

Technological prototype

 Technological prototype for Sc-ECAL has been constructed as a joint effort by R&D groups for ILC-ILD and CEPC-ECAL

- Use the same technology as foreseen in the full scale detector
- Evaluate the performance using full layers (32 layers)
- Two detection layers with double SiPM readout have been installed in the prototype
- Two additional layers with new type of SiPM are also tested

Test beam in DESY

- Originally scheduled in Aug. 2020, but postponed to Mar. 2021, which was again canceled due to COVID-19
- Hoping to have it later this year

Assembly & mounting

- 16 super-modules (32 EBUs) completed
- One super-module consists of two sets of EBU and absorber layer
 - 2 EBUs in x-y configuration
 - Absorber layer: 3.2 mm, 15%-85% Cu-W

Super-module	#module (EBU)	SiPM	Strip length	Strip material (process)
Single-readout 1	12 (24)	S12571-010P	45 mm	PVT (casting)
Single-readout 2	3 (6)	S12571-015P	45 mm	PVT (casting)
Double-readout	1 (2)	S12571-015P	90 mm	PS (injection moulding)
Shinshu	1 (2)	S14160-1315PS	45 mm	PVT (casting)

Mechanical structure

- The mechanical structure with 17 slots for supermodules
- Assembly of full Sc-ECAL prototype finished

Cosmic-ray test

Purpose

- Perfomance evaluation
 - Track finding
 - Efficiency & position resolution
- Cell-to-cell MIP calibration
- Longterm test in 1.5 month
 - Coincidence trigger of top and bottom layers
 - Event rate: ~16 events per minute
 - Collect ~2000 events at each channel

Track finding and fitting

- Some preselections are needed
 - Get rid of noise
 - Find the precise hit track
- A preliminary algorithm performed

	Cut	Efficiency		
nuccoloctions	$TotalHitLayer \ge 22$	92%		
preselections	$TotalHitStrips \leq 64$	99.6%		
	$ADC \geq 5\sigma$	99%		
	All hits			
Iteration Fitting	$ Pos_{x/y} - tracking \le (47.5, 5, 7.5)$			
	$\begin{aligned} Intercept_{x/y} &\leq 114 \\ \varphi_{x/y} &\leq 0.7 \end{aligned}$	98.2%		
Track Selections	$\sigma_{x/y}^2 \le 9.6$	98.3%		
	$TotalHitLayer_{x/y} > 6$	99.8%		
Alignment	$Pos_{x/y}$ – track fitting			

Performance

- Efficiency achieves 95% for all layers
 - Layer 1 & 29 are trigger
 - Affected by MIP threshold
- Position resolution: ~2 mm
 - Difference b/w hit position and fit track for a given layer
 - Achieve the requirement for Sc-ECAL

Zenith angle of injection particle

21/26

MIP calibration

- Preliminary Cell-to-cell MIP calibration succeeded
 - After the angle and gain correction
- MIP values widely spread
 - MIP value is different channel to channel and chip to chip
- Dead channels ~1%

66 / 6720

LED calibration (Inter-calibration)

LED calibration

- Inter-calibration of low gain and high gain for electronics
- Gain calibration of SiPMs (going to study)
- SPIROC2E has high gain and low gain preamplifier
 - Record both data

Inter-calibration factor obtained by the gradient of the relation

Check ADC counts of high gain and low gain, and these relation

Turn on LED at different voltages

Contents

Introduction

- Future electron positron collider (ILC, CEPC)
- Scintillator Electromagnetic calorimeter (Sc-ECAL)

R&D status

- Photosensor
- Scintillator strip design and material
- Electronics
- Large technological prototype
 - Construction
 - Cosmic-ray test
 - Performance check and calibration

Summary & prospects

Summary and Prospects

Scintillator ECAL

- In order to realize PFA and high jet energy resolution, high granular calorimeter is required
- Virtual segmentation : 5 × 5 mm² with scintillator strips in x-y configuration
- R&D status
 - Small-pixel SiPM developed for large dynamic range
 - Bottom-center SiPM coupling gives the best performance
 - Double SiPM readout tested, and detection layer developed
 - Polystyrene-based scintillator produced by injection moulding has good light yield and capability for large-scale production
 - Fully integrated electronics developed
- Sc-ECAL technological prototype
 - Full 32 layers and mechanical structure constructed
 - High efficiency and 2 mm position resolution achieved
 - Cell-to-cell MIP calibration implemented
 - LED calibration such as inter-calibration is on going

Prospects

Test beam experiments

- Test beam using electron beam at DESY in 2021
- Combined test beam experiments together with other CALICE calorimeter prototype
 - such as AHCAL
- Remaining
 - Oetector assembly system for large-scale production
 - Test of power pulsing operation of integrated electronics for ILC Sc-ECAL
 - Optimization of cooling system of integrated electronics for CEPC Sc-ECAL
 - Continuous operation required for CEPC

Backup

Iterative fitting

"Developr

Large angle scattering

13

Residual Sum of Squares

• Residual :
$$\hat{\varepsilon}_i = Y_i - \hat{Y}_i$$

• Residual Sum of Squares : $RSS = \sum_{i=1}^n \hat{\varepsilon}_i^2$
• σ^2 unbiased estimation : $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{\varepsilon}_i^2$

Angular correction for ADC

ADC value should be corrected by the path length in the stri

 \odot If the path length is longer than 2 mm, the output ADC ν

Events 1000 Path length of injected cosmic-ray

Temperature monitoring

- Each layers equipped 16 temperature sensors (0°C~85°C, ±0.1°C)
 - Temperature difference in one layer ~3°C
- Oistribution on layer reconstructed by inverse distance weighted

Temperature and gain correction

