Designing a 30 MHz GPU trigger, the LHCb
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Introduction to LHCb

0.5 - 1% momentum resolution

15 + 29/p1[GeV] micron impact
parameter resolution

Side View

SciFi ~ RICH2
Tracker ——r—

(1+10/JE[GeV])% ECAL resolution

Efficient and high-purity identification
of all five stable charged particle types
(pion, kaon, proton, electron, muon)
over the momentum range 2-100 GeV

upgrade

= ELECTRONS
= PHOTONS = MUONS

A general-purpose forward spectrometer at the LHC, optimized for heavy-flavour physics



The challenge of triggering @ LHCb

proton - (anti)proton cross sections
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The challenge of triggering @ LHCb

proton - (anti)proton cross sections
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Cross-section for processes of interest to LHCb saturates a traditional CALO/Muon trigger
The LHCb upgrade has to run at 2-1033 cm2s-1 — total rethink necessary




Or in a picture...
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Typical triggers select signal needles in Standard Model haystacks

LHCb needs to sort and compresses haystacks of needles — Real Time Analysis!
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Versatile Link

From this follows the LHCb DAQ design for the upgrade

6 x 100 Gbit/s

subfarm
switch

C

|

; vV

40 Tbit/s full event building & processing in a data centre

u

-
s
\,../
VOV VYV V VYV

500 Eventbuilder PCs (software LLT)

1414y

AW,

[/

e

s.//\

o
\‘)\\/
~—

/A

Eventbuilder network

-~ -~ -
* Online -« ®
storage

Eventfilter Farm

~ 80 subfarms

~

UX85B

)

A\ <€

\ L’&ﬁ%ﬁ e from

6 x 100 Gbit/s

Point 8 surface




LHCb upgrade dataflow in more detail
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LHCb upgrade dataflow in more detail

REAL-TIME
ALIGNMENT &

CALIBRATION

5 TB/s
30 MHz non-empty pp

0.5-1.5
4 FULL h PARTIAL DETECTOR MHz -
DETECTOR —> BECONS IRUCIION —’ BUFFER
READOUT & SELECTIONS
L ) 5 (GPU HLT1) 70-200 6% |
TB/s GB/s § CALB §
 EVENTS §
OFFLINE
PROCESSING
Al:(nur;\bers ;elit:g l;to the dataflow are 4 FULL DETECTOR%
taken from the RECONSTRUCTION 26%
Upgrade Trigger and Online TDR & SELECTIONS FULL

(CPUHLT2) § EVENTS |

r mputing M | TDR \_

GB/s |
LHCb-FIGURE-2020-016 -

ANALYSIS
o o PRODUCTIONS &

] TURBO [
 events | 723 USER ANALYSIS

68%

Need to preselect events before running full reconstruction, but based on which criteria?
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Physics content of HLT1 which runs @ 30 MHz

RECONSTRUCTION STEP OUTPUT OBJECTS

VELO tracking with
simplified Kalman Filter VELO tracks
Primary Vertex finding Primary Vertices (PV)
. .VELO Rl track.lng upstream tracks
inital momentum estimate

UT — T stations tracking | ol
with pr > 500 MeV /c ong tracks
Kalman filtering
fitted long tracks
Fake track rejection

EXECUTION ORDER

“Traditional” inclusive selections but based on both transverse momentum and displacement

This of course requires charged particles, so we require 30 MHz tracking at 2- 1033!



Pause and compare this to ATLAS/CMS HL-LHC processing

LHC HL-LHC
CMS detector Run-2 Phase-2
Peak (PU) 60 140 200
L1 accept rate (maximum) 100 kHz 500 kHz 750 kHz
Event Size 20MB? 57MB° __ 74MB
Event Network throughput 1.6 Tb/s
Event Network buffer (60 seconds) 12 TB 171 TB 333 TB
HLT accept rate 1 kHz 5 kHz 7.5 kHz
HLT computing power ¢ 0.5 MHSO06 4.5 MHS06 9.2 MHS06
Storage throughput 2.5 GB/s 31 GB/s 61 GB/s
Storage capacity needed (1 day) 0.2PB 2.7PB 5.3PB

The LHCb upgrade HLT must handle the same realtime data volume as ATLAS/CMS HL-LHC HLTs



Exploiting the full detector readout
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Up to 100 HLT2 sub-farms (4000 servers)



Exploiting the full detector readout

EData from detectors received by O(500)
:FPGA readout boards and built into events
:by a farm of 173 servers

Leaves three PCle slots free per server

:Can now choose: send the full 32 Tb/s to a
: CPU server farm for processing (requires
:two extra network cards per server) or fill
Ethese slots with co-processors (e.g. GPUs)
Eand reduce the data rate locally to 1 Tb/s

:Both options developed and viable — we
Efinally chose the GPU option and I'll talk
:about it in more detail now.

Up to 100 HLT2 sub-farms (4000 servers)
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Three TELL40
readout boards
per EB server



Architecture of one Event builder node
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GPU -equipped event builder PC, with trafﬁc
: of all three readout cards.

If we can put the whole trigger software
on the GPU, then a GPU accelerator is
“transparent” to the Event Builder — like
sending data to a network card.
Architecture should “automagically” work. 5 Up to 100 HLT2 sub-farms (4000 servers)

Up to three cards possible — servers have the cooling capacity to deal with it.



So the architecture should work, will the software?

Essential ingredients for HLT1: X
Upstream track SciFi

1. Find tracks in the vertex detector > T1 T2 T3
2. Find pp collision points and measure

track displacement to them Vel UT

elo

3. Extrapolate tracks to the UT, and ﬁ/Long track

then to the SciFi trackers [
4. Perform muon identification and Velo track ™ Downstream track P —

fake track rejection S~

~ it~ T track

LHCb events are relatively small, O(100 kB), so we must
parallelize both across events and inside each event.

Can we achieve enough parallelism to do the job?




Spoiler alert: we indeed can

{ Raw data }

1 1
Y A4

Global
UT decoding Muon decoding
Event Cut

4

Velo decoding UT tracking Muon ID

and clustering

A

4 Find sec-

Velo tracking SciFi decoding ondary vertices

Select events
Parameterized

Find primary vertices Selected events
Kalman filter
T

4

Simple Kalman filter
SciFi tracking

4

The full sequence contains dozens of components and can accomodate up to O(100) selections

Most algorithms written from scratch for GPU with a logic optimized for SIMT — not ported
Cross-architecture by construction, compiles for CPU to enable “for free” simulation




Interlude on managing software: this began as pure R&D

S 3
-6 | "' Speed-up . m
@ -
:‘, - ‘.* FastVelo on CPU H 1000.§
25 A Fastvelo on GPU §
: H800 g
N £
2 1600 i
- b
- 7]
- la00 &
151 & u
: ' A o
- H200
1—
C | P P P P
Figure 2 Execution of multiple Gaudi pipelines concurrently using a classical CPU algorithm vs. 200 400 600 b 200 1000 4
offloading to a GPU. Number of events processe
— — — — — — — — — — — — — —
M EEEEEEEEEEEEEEEEN
= 2014 2015 = 2016 2017 2018 2019 2020

LHCb had been pursuing individual GPU reconstruction algorithms since 2014, with the most promising work

done on the vertex detector reconstruction algorithm and associated infrastructure (see biblio at bottom).

Bibliography: Badalov et al, Badalov et al
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By 2017 we had largely concluded this would never work
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However porting single algorithms to GPUs was not going to work, mainly because no single algorithm took
a large enough piece of the reconstruction sequence to make this cost-effective.

Bibliography:

Badalov et al

Elapsed Time (milliseconds)

Table 1. Comparison of a CPU and a GPU VELO Pixel tracking algorithm.

PrPixel I Track forwarding
' 1262 | batchof |

3.5 batch of 40
Time per event (ms) 20 batch of 100

0.80 batch of 300
Ghost rate 1.7% 0.8%

Efficiency for long tracks | 98.3% 98.0%

Efficiency for long tracks over 5 GeV 98.8% 98.4%

Nota bene: compares GPU to a single CPU core!

Badalov et al, Badalov et dl
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Then we decided to give the architecture a fair chance...
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At the start of 2018 we decided to try to put the entire HLT1 on GPUs, despite only having a functioning
vertex detector reconstruction and two years to get the job done. We hedged our bets, which seemed
expensive from the point of view of developer time but in fact made optimal use of people’s diverse skills.

Bibliography: Badalov et al, Badalov et al, Badalov et al, Campora et al



https://cds.cern.ch/record/1698101?ln=en
https://inspirehep.net/literature/1302130
https://iopscience.iop.org/article/10.1088/1748-0221/11/01/P01001
https://ieeexplore.ieee.org/document/8778210
https://cds.cern.ch/record/1698101?ln=en
https://inspirehep.net/literature/1302130
https://iopscience.iop.org/article/10.1088/1748-0221/11/01/P01001
https://ieeexplore.ieee.org/document/8778210

And learned that it can be easier to achieve the harder goal
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Putting “everything” on the GPU unlocked the power of the architecture and made it cost-effective. Classic
accumulation of knowledge on a plateau followed by a phase transition as it came together. Similarly, the
vectorization of our CPU reconstruction also came together in parallel to meet the required performance.

Bibliography: Badalov et al, Badalov et al, Badalov et al, Campora et al, GPU HLT TDR
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throughput performance

Quadro RTX 6000 (GPU)

Geforce RTX 2080 Ti (GPU)

Tesla V100 32GB (GPU)

2x AMD EPYC 7502 (CPU)

2x Intel Xeon Broadwell 2630 (CPU)

LHCb
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Allen throughput (kHz)

O(200) GPUs required to reach 30 MHz so there is plenty of spare capacity!

References: LHCb-FIGURE-2020-014
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HLT1 throughput performance

Quadro RTX 6000 (GPU)
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e Quadro RTX 6000

e GeForce RTX 2080 Ti
®

Tesla V100 32GB

e GeForce GTX 1080 Ti

e GeForce GTX 1060 6GB

Excellent throughput scaling with theoretical TFLOPS of GPU card

References: LHCb-FIGURE-2020-014
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HLT1 throughput performance
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Throughput plateaus with increasing occupancies rather than falling off a cliff
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HLT1 reconstruction performance
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HLT1 selection performance @ ~1 MHz output rate

BsPhiPhiMD, HIt1TwoTrackMVADecision KstMuMuMD, HIt1TwoTrackMVADecision
£ . = R
S {[~—-=c=c=cscecccccccccccccccccccccceccccceccncacnanany ‘S L} ettty — K crrcecn « w028 001
£ | O cammmommanan. stm e = - O cncamemnmsans samosam
0.8 #‘ A —— 0.8— % % T
- | i_’ - —O—_ T - . ‘
FEUEIERpE Sl i H
0.6— + %& —A— _‘}_ L 0.6— -
i —O— A [ %: %t ——
\ ©
L | -]
: T =
049 O —h— 0.4}
B o | —a— | &
0.2} 0.21%
O _I._\\ 1 A I | 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 | I 1 1 | I 1 1 1 I 1 1 0 i | 11 l | l 1 1 l 11 1 l L1 1 1 L1 1 l L1 1 l 11 1 l L1 1 l L1
2000 4000 6000 8000 10000 12000 14000 16000 18000 2000 4000 6000 8000 10000 12000 14000 16000 18000
B_s0_TRUEPT/MeV BO_TRUEPT/MeV

Selections nowhere near tuned — of course can only happen once we've
commissioned the all-new detector hardware

On MC keep > 50% of all reconstructible key B decays with some reasonable
parent/child transverse momentum. More than good enough for now!

References: LHCb Upgrade GPU High Level Trigger TDR
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CPU #0

Integration test — can this be used for stable datataking?

TELL4@ data generation #0 TELL4® data generation =1

— T ——

TELL4@ data generation #2
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MEP prefetch =@ MEP prefetch =1
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Network MEP data transmission #0 Network ... #1
Network MEP data transmission #2 Network ... #3

e ——

_— —

Send to GPU #@ Send to GPU #1

Send to GPU #2 Send to GPU =2

— P

Emulate network traffic & memory pressure by getting FPGA boards to generate data.

References: LHCb Upgrade GPU High Level Trigger TDR
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Integration test — can this be used for stable datataking? Yes!

Allen throughput Total Host 10 - Stacked
80 kHz 125.0 GBs
100.0 GBs
60 kHz
I 75.0 GBs
=
a 4 KHz
S GBs
i 25.0 GB
0F
i 06:00 07:00 08:00 09:00 10:00
07:00 09:00 ]
- e 0, host Ibdagrome02 == Instance 1, host Ibdaq == Tell40 Traffic == CPU Traffic == GPU Traffic == EB In EB_Out
= ance 2, host Ibdagrome02
4 oughp D 0 O

References: LHCb Upgrade GPU High Level Trigger TDR
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Conclusion and outlook

LHCDb is ready to tackle the Run 3 N o : .
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Work ongoing to implement (g4l (7> 0-2p3)
further algorithms on GPU and I T ST

extend the reach of the HLT for pt cut (GeV/c)
neutral and long-lived particles

Looking forward to commissioning!

https://qgitlab.cern.ch/lhcb/Allen
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Cross-architecture differences
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Comparison of track states executing Allen on GPU and CPU — for vast majority of tracks agreement

is at permille level or better. Same is true for most other quantities and we explicitly test for this.
References: LHCb Upgrade GPU High Level Trigger TDR
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