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Data reduction levels of 10 required due to bandwidth constraints
Data fl |te rn g Hard real-time constraints necessitate fixed latency algorithms

dan d S€E | ECt 10N at Data preparation of numerous data sources from front-end instrumentation

h d d ron CoO | | | d ers Complex algorithms deliver variety of trigger and physics objects for accept vs. reject

Huge selection menus ultimately determine data recorded vs. discarded
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The problem(s)

* Triggers not necessarily globally optimized
for both physics and resource usage

Beam Spot Position x ATLAS Preliminary

[J 2015, Mean = -0.61 mm Vs=13 TeV
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512017, Mean - -0.49 mm Fills 4214 - 7334

[]2018, Mean = -0.40 mm

* Accelerator conditions vary with time

Luminous centroid x [mm]

* Detector conditions vary with time
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* Trigger menus have both known and unknown biases
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* Most of the data is never used, despite being processed
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What if the data processing

and reduction pipeline could
continuously learn to

determine what data to save
on its own??
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Adaptive optics
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ATLAS online beamspot measurement

€ 0.026—  _ —
£ — ATLAS Operations ®  Current beam spot -
5 B LHC Fill 2644 <% Nominal beam spot used by HLT _
£ 0.024—  Online Beam Spot [ 1 #+10% of estimated luminous width in y —
-O S g pu—
§ : :
@ 0.022—% —
= — t d ; )
£ - =
€ 0.020— —
= - _|
= | _|
p o) - —
L 0.018— Bl
© - : s
£ — —
Lcﬁ 0.016 — ] ] ] | ] ] ] | ] ] ] | ] ] ] | ] ] ] 1

0 200 400 600 800 1000

. . . Luminosity block
Uses data (input to HLT) that are never seen offline to measure beamspot and update HLT algorithms
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Very rough sketch of current approaches

Very good reasons for the stability
(slowness) of updates:

* Well-understood trigger
and behaviors

* Modeling in

* Logistics and issues
in menu design and analysis

e Known and unknown in
selection algorithms

(*) Except for “prescales”, see next slide
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Before we would even consider
allowing for continuous updates
(or intermittent but autonomous)
we would insist on knowing:

* What has been learned such
that an update is merited?

* What are the impacts of those
updates?
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ATLAS, (2019), PhD Thesis

Automatic prescaling in ATLAS
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https://discoverycenter.nbi.ku.dk/teaching/thesis_page/GormGalsterPhD.pdf

In 2018
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All events: 142 BILLION €
Triggered for physics: 6.4 BILLION events

vents (~11 PB)

Num

riggers: ~ 1200 trigge




Typical (HLT) trigger algorithm workflow
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What has been learned such that an update

is merited?

E ﬂV | S | O n | n g  |nterpret the output of the algorithm

e “Why” was the event triggered?
a S e H:— e What trigger algorithm was “most important” to the

o trigger decision?
driving

trigger
e Given a definition of the resource cost of a set of

SySte m triggers, how can we optimize the algorithm execution
and usage to minimize that resource usage?
e Cost might include bandwidth considerations, CPU

time, data preparation, etc

What are the impacts of those updates?
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Jet Feature Jet Feature Jet Feature Tau Feature Photon Feature Photon Feature C O St e ff e Ct i V e

> > “explanation”
of an event

Jet Trigger Tau Trigger Jet Trigger Photon Trigger

For this single event, the Tau
Trigger has the highest cost and
thus the weight associated with

High Cost . .
N the Tau Trigger was driven to 0.
Pogltlvg . - .
Weight: -0.51 C‘:‘"'b‘fm“ The remaining weights result in
egative : _ :
ok aticn the final cost effective .
Weight: 0.34 explanation of the event, with
Low Cost

the weights with the highest
absolute value being the most
important.
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https://ml4physicalsciences.github.io/2020/files/NeurIPS_ML4PS_2020_141.pdf

Demonstration of trigger (cost) optimization
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— CE-LIME —— CE-LIME
- . - ~--- LIME N 400{ ____
We modified the interpretability framework on the 3001 e Global it e
previous slide to account forcost. | o Global Jo 300 - Global
8 200 4 3
o O 200
[ ]
Toy dataset 100 106
* Randomly generate trigger items
(“features”) and associated resource costs , . : . oL . : : :
(”COSt") 50 60 70 80 90 100 0 20 40 60 80

Desired Accuracy (%)
[ ]

Number of Features

Minimize the total cost while maintaining

(a) Cost vs Performance, Toy Dataset
the physics result (accept or reject!)

(b) Cost vs # Used Features, Toy Dataset
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(d) Cost vs # Used Features, CMS Open Data
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https://ml4physicalsciences.github.io/2020/files/NeurIPS_ML4PS_2020_141.pdf

Modeling trigger “cost” using CMS open data
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https://ml4physicalsciences.github.io/2020/files/NeurIPS_ML4PS_2020_141.pdf

Future work: stream-based active learning

. Use the interpretable and cost-effective

modeling described in the previous slides to
update the trigger selections and algorithms

Model inputs (particles, energy)

A

y
innnnn

(e.g. number of jets) required to maintain
LHC experiment

coverage of key physics processes.
99% inclusive QCD h

SN

Action: ]
Online identification Offline operator

of interesting events

Data archive and

real-time quality
monitoring
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Summary and
conclusions
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