Real-time analysis in Run 3 with the LHCb experiment

Mika Vesterinen
University of Warwick
On behalf of the LHCb RTA project
CPAD Instrumentation Frontier Workshop 2021
Stony Brook University, NY
18-22 March 2021

Science and
Technology
Facilities Council

LHCb detector (Upgrade I configuration)

Compared to original experiment

1. Higher granularity detectors
2. Triggerless readout + full software trigger

LHCb detector (Upgrade I configuration)

Compared to original experiment

1. Higher granularity detectors
2. Triggerless readout + full software trigger

Same/better physics performance @5x higher luminosity

Opportunities and challenges

\leftrightarrow lots of physics
:) lots of data to process

For example, muons

PRL 120 (2018) 061801

For example, muons

PRL 120 (2018) 061801

For example, muons

PRL 120 (2018) 061801

...after analysing a small amount of information from ~all events!

Another example, charm

Another example, charm

Real time analysis

Data rate ~ event size * event rate

1. Aggressive reduction required quickly and early

Requires "offline quality" alignment, calibration and reconstruction in HLT2, including RICH PID etc...
2. Flexibility w.r.t. how to reduce the data

Evolution of LHCb's "Turbo" stream

Turbo stream evolution in Run-II

Turbo stream evolution in Run-II

VELo
RICH
ECAL

Turbo stream evolution in Run-II

Turbo stream evolution in Run-II

Persistence	Since	Average event size
Turbo [1]	2015	7 kB
Selective persistence [2]	2017	15 kB
Complete persistence	2016	50 kB
Raw event	2010	70 kB

By the end of Run-II:

- 528 HLT2 lines,
$\cdot \approx 50 \%$ of which were Turbo,
- Taking 25% of the rate for 10% of the bandwidth

LHCb upgrade data flow diagram

LHC BUNCH
 CROSSING (40 MHz

E.g., offline quality RICH PID for HLT2

JINST 14 (2019) P04013

Performance slightly better than the offline version from Run-I.
RICH PID is a crucial requirement for the Turbo stream.

Real time alignment and calibration

((~7min),(~12min),(~3h),(~2h)) - time needed for both data accumulation and running the task

Buffering in Run-II

- Run-II HLT farm: ~50k x86 cores
- HLT2 throughput $\sim 80 \mathrm{kHz}$ out of fill
- HLT1 output ~ 150 kHz

Full offline quality reconstruction in HLT2

RECONSTRUCTION STEP

Plus full upfront RICH and CALO reconstruction
Aim for same/better in Run-3 How fast does it need to be?

Getting to $\mathrm{O}(500 \mathrm{kHz})$ HLT2 throughput

1. Multithreading

Task based scheduler in Gaudi, and major effort to port algorithms for thread safety.
2. Vectorisation
E.g. VELO JINST 15 (2020) 06, P06018
3. Simplifications/approximations where the impact on physics performance is negligible or tolerable.
E.g. parameterised Kalman fit $\underline{2101.12040}$

State of HLT2 (~April 2020)

LHCb-FIGURE-2020-007

Managing $\mathrm{O}(1 \mathrm{k}) \mathrm{HLT} 2$ selections

LAZY_AND
NON_LAZY_AND
LAZY_OR
NON_LAZY_OR
NOT

Example dependency tree with two lines

Managing O(1k) HLT2 selections

Vectorised selections LـLCB-FIGURE-2020-018

LHCb simulation

Software development and testing

Project Dependency	Simulation	Digitization	Alignment	Python Analysis	Analysis Repository	Event Display	Trigger	Online Monitoring
	Gauss	Boole	Brunel	Bender	Erasmus	Panoptix	Moore	Lovell Orwell Panoptes Vetra
				DaVinci				
				Phys				
			Rec					
		LbCom						Online
	LHCb							
	Gaudi							

Application Library

- Migration to gitlab in early 2016, but usage has evolved for Run-3.
- Formal code review coordinated by "RTA shifters" with support from [RTA project] "maintainers".
- Larger suite of regression tests, quantifying physics performance and throughput.

Conclusions

lots of physics

- lots of data to process

Ambitious real time analysis scheme is on track thanks to huge effort and innovation with the design of software and algorithms.

Backup slides start here

Upgrade I environment

Physics goals \rightarrow requirements for trigger

$\mathrm{m}_{\mathrm{B}} \sim 5 \mathrm{GeV}$
$(\gamma C T)_{B} \sim 1 \mathrm{~cm}$

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{D}} \sim 2 \mathrm{GeV} \\
& (\gamma \mathrm{CT})_{\mathrm{D}} \sim 4 \mathrm{~mm}
\end{aligned}
$$

(within a broad program including W, Z, Onia, etc... production, light-exotics, ions and fixed target physics...)

Beauty and charm signatures aren't well suited to typical lowlevel triggers.

Run at levelled luminosity of $4 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ with 1 MHz triggered readout.

HLT2 selections in Run-II

LHCB-TDR-018

stream	event size (kB)	event rate (kHz)	rate fraction	throughput $(\mathrm{GB} / \mathrm{s})$	bandwidth fraction
FULL	70	7.0	65%	0.49	75%
Turbo	35	3.1	29%	0.11	17%
TurCal	85	0.6	6%	0.05	8%
total	61	10.8	100%	0.65	100%

