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Over the next years, FNAL is working towards a major upgrade of the 
accelerator complex, called the Proton Improvement Plan-II (PIP-II)

Goal: achieve a Megawatt proton beam, to meet the required proton per 
pulse density for DUNE physics
Requires: new Linac, downstream improvements to maintain luminosity

PIP-II
SRF Cryomodule
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Fermilab Site

Booster ring

Booster synchrotron: accelerates protons 400 MeV → 8 GeV, and 
delivers to Main Injector and experiments (LBNF / DUNE)
Without upgrade, Booster beam losses will limit DUNE luminosity
→ Proposal of ML regulator for enhanced beam control (2011.07371)

https://arxiv.org/abs/2011.07371
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• Combination of RF cavities         and bending magnets
• Bending magnet current ramps in 15hz cycles to maintain the orbit of 

the accelerating proton beam
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A single Booster cycle
• Combination of RF cavities         and bending magnets
• Bending magnet current ramps in 15hz cycles to maintain the orbit of 

the accelerating proton beam

Gradient Magnet Power Supply
(GMPS)
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8 GeV beam extracted at maximum B-field

A single Booster cycle
• Combination of RF cavities         and bending magnets
• Bending magnet current ramps in 15hz cycles to maintain the orbit of 

the accelerating proton beam

Gradient Magnet Power Supply
(GMPS)
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Booster unfilled for half-cycle

Next cycle at
t=1/15 sec

Ramp-down for next batch

A single Booster cycle
• Combination of RF cavities         and bending magnets
• Bending magnet current ramps in 15hz cycles to maintain the orbit of 

the accelerating proton beam

Gradient Magnet Power Supply
(GMPS)
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GMPS current stability
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Imin

Imax Sinusoidal waveform is prescribed 
for GMPS current

Measured current does not 
perfectly match prescription
→ Relative difference is O(%)
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This spread in GMPS current (B-field) degrades the beam quality, 
leading to lost protons

Controls problem: How can one precisely manipulate the magnetic 
field to mitigate beam losses?
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GMPS current stability
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B:IMINER = "Measured - Target"

B:VIMIN

+/-5% err

B:VIMAX

+/-0.05% err

Proportional, integral compensation

No control feedback With PI controller

Current system incorporates 
feedback via a "PI loop".

Iset(t1) = Itarget � ↵ · Err(t0)� �
0X

i=�N

Err(ti)
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GMPS control schematic
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Reference system:
B coil, transductor, 

dB/dt coil, zero-crossing

GMPS control rack

PI Loop
(FPGA)

target 
settings

Power supplies 1-4

measurements 
(& errors)

control signals

series
connect

Accelerator Control Network

sampled 
Imin, Imax

Measure errors
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GMPS control schematic
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Reference system:
B coil, transductor, 

dB/dt coil, zero-crossing

GMPS control rack

PI Loop
(FPGA)

target 
settings

Power supplies 1-4

measurements 
(& errors)

control signals

series
connect

Accelerator Control Network

sampled 
Imin, Imax

Measure errors

Areas for improvement:

PI loop considered Imin errors 
as the only form of feedback.

Control parameters must be 
selected, monitored by 
accelerator experts.
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A Neural Network controller?
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Reference system:
B coil, transductor, 

dB/dt coil, zero-crossing

GMPS control rack

Neural Net
(FPGA)

target 
settings

Power supplies 1-4

measurements 
(& errors)

control signals

series
connect

Accelerator Control Network

sampled 
Imin, Imax

Measure errors
Profit from recent progress 
porting ML algos to FPGAs.

Can naturally incorporate 
many inputs.

Offers potential for "live" 
adjustments to the algorithm 
parameters while in operation.

See talk by
J. Ngadiuba!
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A Neural Network controller?
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Neural Net Control FPGABooster system

Fundamental challenge of the approach: how to incorporate realistic 
feedback into the control model development process?

To begin, we cannot (should not?) test with the real Booster system
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NN ControllerBooster Surrogate

Fundamental challenge of the approach: how to incorporate realistic 
feedback into the control model development process?

To begin, we cannot (should not?) test with the real Booster system

"Agent""Environment"
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Booster’s digital twin
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Booster Surrogate

B:IMINER
"Measured - Target" 
B-field at minimum

Last 150 sampled values 
of predictive signals
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A. Devices and Variables

From the 54 devices recorded, we chose a subset to
facilitate initial studies of B:IMINER, the systemic reg-
ulation error at the GMPS cycle minimum. These first
studies were conducted using only five sets of time-series
data identified by accelerator domain experts as being
potentially predictive of the regulation error. In addition
to B:IMINER, these include B:LINFRQ, B:VIMIN, I:IB,
and I:MDAT40. Here, B:VIMIN is the compensated recom-
mendation for the minimum value of the o↵set-sinusoidal
magnetic field, issued by the GMPS regulator in order to
decrease the magnitude of B:IMINER. B:LINFRQ is the
measured o↵set from the expected 60 Hz line frequency.
I:IB and I:MDAT40 provide measurements of the main
injector bending dipole current at di↵erent points in the
circuit and through di↵erent communication channels.

This expert-chosen set of limited parameters was used
to prototype simplified algorithms and train the Booster
surrogate model in Sec. V as well as test lightweight RL
agent models in hardware in Sec. VI. However, in order to
more fully explore the utility of the full set of logged sig-
nals for future studies, a Granger causality study was per-
formed using variables correlated or anticorrelated with
B:IMINER, with absolute Pearson correlation coe�cient
|r| > 0.20. B:LINFRQ and I:IB were also considered on
advice of system experts.

For a given pair of concurrent time series—one poten-
tially causal, the other potentially responsive—Granger
causality does not prove pure causation. Instead,
Granger causality suggests the response variable could
be better predicted using both time series jointly rather
than using the response variable’s self-history alone. This
test consists of creating and comparing two linear regres-
sion models: a self-model and a joint-model for both the
response variable and the potentially causal variable, and
calculating coe�cients for each lag value (time di↵erence)
being tested, from one up to some predetermined maxi-
mum number of time steps [33]. If at least one coe�cient
is not zero in the joint model, then the other variable is
said to be “Granger causal” with respect to the response
variable, at the lag value being tested. We compared
p-values to test statistical significance at each lag value
up to 50 lags (approximately 3.33 s) as well as looked
at the di↵erence between the Bayesian information cri-
terion (BIC) of the self and joint-models. As a result of
these iterative calculations, we identified three additional
variables—B:VIMAX, the compensated maximum GMPS
current, B:VIPHAS, the GMPS ramp phase with respect
to line voltage, and I:MXIB, the main injector dipole bend
current—that will be considered in the next iteration of
the surrogate model.

The initial selection of B:IMINER, B:LINFRQ, B:VIMIN,
I:IB, and I:MDAT40 formed a subset of the top eight
“causal” variables identified through the causality study.
Table I briefly summarizes these parameters of interest,
used in this iteration of the surrogate model.

TABLE I. Description of dataset parameters chosen by ex-
perts and later validated with a causality study. Here,“MI”
means Main Injector, “MDAT” means accelerator (machine)
data communication, and device parameters that begin with
B are related to the Booster, whereas device parameters that
begin with I are related to the Main Injector.

Parameter Details [Units]
B:IMINER Setting-error discrepancy at injection [A]
B:LINFRQ 60 Hz line frequency deviation [mHz]
B:VIMIN Compensated minimum GMPS current [A]
I:IB MI lower bend current [A]
I:MDAT40 MDAT measured MI current [A]

B. Data Processing for ML

Although the devices were configured to write out
reading and setting data at 15 Hz, actual timestamp in-
tervals varied from this nominal frequency , and times-
tamps were not well synchronized across devices. Thus,
for time alignment purposes, we made use of the recorded
timestamps for Event0C, a broadcast accelerator control
event which is synchronized to the fitted minimum of the
periodically varying magnetic field in the gradient mag-
nets described in Sec. III. This control event serves as a
logical choice of reference time for GMPS-related param-
eters. Using Apache Spark-based [34] algorithms to pro-
cess the data in parallel, we first calculate the maximum
interval between successive timestamps for each device
across all 176 days (necessarily excluding the five-month
gap between our two data-taking periods). Then, we use
the corresponding largest observed lag between recorded
values within each device to place the upper limit on a
look-back window from an Event0c timestamp in order
to align the most recent device timestamp within that
window to a corresponding event timestamp.

V. MACHINE LEARNING METHODS

ML refers to the process by which we adjust the ran-
domly initialized parameters of generic function approx-
imators, termed “models,” so as to minimize an appro-
priately chosen loss function, or conversely to maximize
a reward function. ML model architectures specify ar-
rangements of “nodes,” usually co-evaluated in layers,
where each node calculates the weighted sum of the in-
puts and a bias term, and outputs the value of a nonlinear
“activation function.” The outputs of one layer typically
provide the inputs to the next layer; in the simple mul-
tilayer perceptron (MLP) architecture, all nodes in each
layer send copies of their output values to all nodes in
the next layer. Layers not at the input or output are
termed “hidden” layers. There are useful variations on
this simple layer stack architecture such as recurrent neu-
ral networks (RNN), wherein some outputs from a pre-
vious forward inference are taken as inputs. Our work

8

TABLE II. Fermilab Booster surrogate model, which learns
to reproduce the environment in terms of the three time-
series variables, one of which determines the reward as given
in Eq. 4. The input LSTM layer receives five values, de-
scribing the current state B:IMINER, B:LINFRQ, B:VIMIN, I:IB,
and I:MDAT40. The output layer is a prediction of B:IMINER,
B:LINFRQ, B:VIMIN.

Layer Layer Type Outputs Activation Parameters

1 LSTM 256 tanh 416,768

2 LSTM 256 tanh 525,312

3 LSTM 256 tanh 525,312

4 dense 3 linear 771

Total · · · · · · · · · 1,468,163

FIG. 6. Selected test data (blue) versus prediction values
(orange) from the Booster LSTM surrogate model.

Overlaid time series from the data and from LSTM pre-
dictions for a selected time window are shown in Fig. 6.
Based on the great similarity of these results, the surro-
gate model was deemed adequate to use for initial train-
ing of the RL policy model.

C. Reinforcement Learning for GMPS Control

For this study, we formulated the problem as an
episodic Markov decision process, where every episode
contains 50 time steps. As in all Q-learning, the agent
learns to maximize the reward within the time horizon of
an episode. We developed our RL workflow based on a
variant of DQN, the double DQN algorithm [36, 49, 50],

using Keras [47] to optimize B:VIMIN settings dynam-
ically to minimize GMPS error B:IMINER. The double
DQN explicitly decouples the target model, which is used
to evaluate actions, from the policy model, which is used
to select actions, although they take the same form.

We used the OpenAI gym package [51] to develop the
environment that serves as a wrapper around the virtual
accelerator complex model described above in Sec. VB
to interact with the RL agent. The observation state
space is defined by the aforementioned five variables in
the virtual complex model section, shown to causally re-
late to B:IMINER. The action state space only contains
one free parameter of control: adjustments to B:VIMIN.
The seven discrete control options relative to the previ-
ous B:VIMIN are 0 (no change), ±0.0001, ±0.005, and
±0.001. The choice of these values was based on the ac-
tual distribution of the changes in B:VIMIN observed in
the data.

At the start of each episode, 150 time steps from the
data are used to initialize the system state, as is required
for the Booster surrogate model. The 150th step defines
the observation state used by the agent. For each step
thereafter, the agent provides a new action specified by
the change in B:VIMIN, and the system state is updated.
The new system state is then used to predict the next
B:IMINER. After the prediction, the system state is incre-
mented to the next time step. The current state, reward,
and status for each step is passed to the agent to be used
for training the DQN policy model.

During training, event samples are placed into a bu↵er
before calculating the loss. This memory bu↵er is sam-
pled randomly in a process called experience replay [36]
in order to remove instabilities found to arise from train-
ing on time-ordered samples. Once the memory bu↵er
has su�cient experiences (32 experiences for this study)
the active policy model begins training and continuously
updating. We use the ✏-greedy [52] method to control
the agent’s tradeo↵ between exploration (random choice
of action) and exploitation (deterministic action dictated
by the current policy), in which the optimal action ac-
cording to the current policy is chosen with probability ✏,
while a random action is selected with probability 1 � ✏.
At the beginning of the training session we set ✏ = 1 with
a decay factor of 0.9995, applied multiplicatively when-
ever an exploration action is selected, until a minimum
value of ✏ = 0.0025 is reached. For this study, we use a
multilayer perceptron (MLP) as the policy model archi-
tecture, and rectified linear unit (ReLU) activation func-
tions [53], as summarized in Table VIA.The active policy
model is continuously updated during training by using
randomly selected experiences from the memory bu↵er.
At each training step the weights of the target model
✓target are incrementally updated to reflect the weights
of the active policy model ✓policy,

✓target 7! ✓target(1 � ⌧) + ⌧✓policy, (8)

where we set ⌧ = 0.5 [39].
RL algorithms learn from the reward provided by the

Find that an LSTM recurrent NN 
can reproduce the historical 
Booster response quite well.

Fundamental challenge of the approach: how to incorporate realistic 
feedback into the control model development process?

To begin, we cannot (should not?) test with the real Booster system
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A simple Neural Network controller is ideal for a first demonstration
Facilitates straightforward comparisons with the PI loop decision
A small NN allows for maximum flexibility in our initial FPGA design
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A. Devices and Variables

From the 54 devices recorded, we chose a subset to
facilitate initial studies of B:IMINER, the systemic reg-
ulation error at the GMPS cycle minimum. These first
studies were conducted using only five sets of time-series
data identified by accelerator domain experts as being
potentially predictive of the regulation error. In addition
to B:IMINER, these include B:LINFRQ, B:VIMIN, I:IB,
and I:MDAT40. Here, B:VIMIN is the compensated recom-
mendation for the minimum value of the o↵set-sinusoidal
magnetic field, issued by the GMPS regulator in order to
decrease the magnitude of B:IMINER. B:LINFRQ is the
measured o↵set from the expected 60 Hz line frequency.
I:IB and I:MDAT40 provide measurements of the main
injector bending dipole current at di↵erent points in the
circuit and through di↵erent communication channels.

This expert-chosen set of limited parameters was used
to prototype simplified algorithms and train the Booster
surrogate model in Sec. V as well as test lightweight RL
agent models in hardware in Sec. VI. However, in order to
more fully explore the utility of the full set of logged sig-
nals for future studies, a Granger causality study was per-
formed using variables correlated or anticorrelated with
B:IMINER, with absolute Pearson correlation coe�cient
|r| > 0.20. B:LINFRQ and I:IB were also considered on
advice of system experts.

For a given pair of concurrent time series—one poten-
tially causal, the other potentially responsive—Granger
causality does not prove pure causation. Instead,
Granger causality suggests the response variable could
be better predicted using both time series jointly rather
than using the response variable’s self-history alone. This
test consists of creating and comparing two linear regres-
sion models: a self-model and a joint-model for both the
response variable and the potentially causal variable, and
calculating coe�cients for each lag value (time di↵erence)
being tested, from one up to some predetermined maxi-
mum number of time steps [33]. If at least one coe�cient
is not zero in the joint model, then the other variable is
said to be “Granger causal” with respect to the response
variable, at the lag value being tested. We compared
p-values to test statistical significance at each lag value
up to 50 lags (approximately 3.33 s) as well as looked
at the di↵erence between the Bayesian information cri-
terion (BIC) of the self and joint-models. As a result of
these iterative calculations, we identified three additional
variables—B:VIMAX, the compensated maximum GMPS
current, B:VIPHAS, the GMPS ramp phase with respect
to line voltage, and I:MXIB, the main injector dipole bend
current—that will be considered in the next iteration of
the surrogate model.

The initial selection of B:IMINER, B:LINFRQ, B:VIMIN,
I:IB, and I:MDAT40 formed a subset of the top eight
“causal” variables identified through the causality study.
Table I briefly summarizes these parameters of interest,
used in this iteration of the surrogate model.

TABLE I. Description of dataset parameters chosen by ex-
perts and later validated with a causality study. Here,“MI”
means Main Injector, “MDAT” means accelerator (machine)
data communication, and device parameters that begin with
B are related to the Booster, whereas device parameters that
begin with I are related to the Main Injector.

Parameter Details [Units]
B:IMINER Setting-error discrepancy at injection [A]
B:LINFRQ 60 Hz line frequency deviation [mHz]
B:VIMIN Compensated minimum GMPS current [A]
I:IB MI lower bend current [A]
I:MDAT40 MDAT measured MI current [A]

B. Data Processing for ML

Although the devices were configured to write out
reading and setting data at 15 Hz, actual timestamp in-
tervals varied from this nominal frequency , and times-
tamps were not well synchronized across devices. Thus,
for time alignment purposes, we made use of the recorded
timestamps for Event0C, a broadcast accelerator control
event which is synchronized to the fitted minimum of the
periodically varying magnetic field in the gradient mag-
nets described in Sec. III. This control event serves as a
logical choice of reference time for GMPS-related param-
eters. Using Apache Spark-based [34] algorithms to pro-
cess the data in parallel, we first calculate the maximum
interval between successive timestamps for each device
across all 176 days (necessarily excluding the five-month
gap between our two data-taking periods). Then, we use
the corresponding largest observed lag between recorded
values within each device to place the upper limit on a
look-back window from an Event0c timestamp in order
to align the most recent device timestamp within that
window to a corresponding event timestamp.

V. MACHINE LEARNING METHODS

ML refers to the process by which we adjust the ran-
domly initialized parameters of generic function approx-
imators, termed “models,” so as to minimize an appro-
priately chosen loss function, or conversely to maximize
a reward function. ML model architectures specify ar-
rangements of “nodes,” usually co-evaluated in layers,
where each node calculates the weighted sum of the in-
puts and a bias term, and outputs the value of a nonlinear
“activation function.” The outputs of one layer typically
provide the inputs to the next layer; in the simple mul-
tilayer perceptron (MLP) architecture, all nodes in each
layer send copies of their output values to all nodes in
the next layer. Layers not at the input or output are
termed “hidden” layers. There are useful variations on
this simple layer stack architecture such as recurrent neu-
ral networks (RNN), wherein some outputs from a pre-
vious forward inference are taken as inputs. Our work

Inputs: current values for the 
five important signals Outputs: 7 actions

• No change
• ± 1 mV
• ± 0.5 mV
• ± 0.1 mV

Control NN

Matrix 
multiplication

Non-linearity, e.g.
σ(xi)=max(xi,0)

yi = �(wijxi + bi)� wij bi

3 hidden layers 
of 56 nodes

Core of each NN "layer" is
an N→M matrix multiplication

Prescribe that GMPS takes the action 
corresponding to the largest output node
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Prescribe action

Update environment/state
Reward = -|B:IMINER|

Controller interacts with Booster, accumulating rewards by minimizing errors
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Prescribe action

Controller interacts with Booster, accumulating rewards by minimizing errors

Rewards inform updates to the NN’s 7k configurable weights, using the 
"Double Deep Q-Network" paradigm (1509.06461).
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48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives some representation
of the environment’s state, St � S, and on that basis selects an action, At � A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 � R � R, and finds itself in a new state, St+1.4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s�

� S and r � R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s�, r |s, a)
.
= Pr{St =s�, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s�, s � S, r � R, and a � A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S ⇥ R ⇥ S ⇥ A ! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

FIG. 4. The agent-environment interaction in a Markov de-
cision process [35]. The agent executes a policy that selects
an action At given the current St, which results in a reward
Rt+1 and a new state St+1 of the environment.

makes use of both MLP and RNN architectures.
For a given architecture with its activation functions,

the weights and biases are the parameters being adjusted
in the optimization or “training.” The “learning rate”
sets the proportionality of parameter adjustment to gra-
dients of improved performance (based on lower loss or
higher reward).

RL is the subfield of AI aimed at optimizing of con-
trol or planning of complex tasks based on feedback in-
puts from an environment, as explained below. The main
components of RL are the environment and the agent, a
ML model, as illustrated in Fig. 4. RL trains a model
over many time steps, and the resulting model may then
be taken as fixed, to be deployed on new data; the model
may be expected to perform similarly on new data as it
did in training, if the dynamics of the new data were well
represented in the training data. However RL extends
naturally to continuous online learning, which would al-
low our regulator to adapt to changing environmental dy-
namics such as seasonality or new modes of accelerator
complex operation, even though we would initially deploy
a static or infrequently updated model out of prudence.
We set out to use RL to train an optimal regulation pol-
icy dictating which action the GMPS regulator should
take in any given state of the system.

The environment, usually formulated as a Markov
decision process (MDP), is represented by a time-
independent, discrete system with which the RL agent
interacts (e.g. the accelerator complex). For the regula-
tion of the GMPS current minimum, the environment
includes the time-varying outside influences for which
the GMPS regulator makes compensating changes. At
each time step t, the environment takes in the control
action At determined by the RL agent based on the cur-
rent state St, and provides the new system state St+1

(e.g. settings and measured quantities) along with an
associated reward Rt+1. Optimizing the agent’s policy
actions is defined to mean maximizing the long-term in-
tegrated reward. In this study, the reward is calculated
from the error in the minimum value of the GMPS cur-
rent, B:IMINER:

Rt = �|B:IMINER(t)| . (4)

The larger the magnitude of B:IMINER, the lower the re-

ward. The possible actions At we consider correspond to
adjusting the value of B:VIMIN, the lone control variable.

Recently, significant progress has been made in RL by
combining it with advances in deep learning. Deep learn-
ing models are well suited to representing complex poli-
cies for high-dimensional problems such as regulation in a
dynamically variable environment. The deep Q-network
(DQN) [36, 37] approach, which we adopt for this study,
involves using a deep neural network to learn the action-
value function, or Q-value, and is usually deployed in
environments that take discrete control actions. The op-
timal policy can then be derived by choosing the action
that maximizes the expected Q-value.

More formally, a policy ⇡ is used by an agent to decide
what actions At = ⇡(St) to take given a state St at time
t. An optimal policy ⇡⇤ maximizes the Q-value,

Q(St, At) =
TX

t0=t

E
h
�t0�tR(St0 , At0)|St, At

i
, (5)

where E is the expectation value operator, Rt ⌘

R(St, At) is the reward at time t, and � is the dis-
count factor that de-emphasizes future rewards relative
to present ones. For this study, a value of � = 0.85
was found to be performant. The Q-value is the sum of
the expected discounted rewards from the current time
t up to the horizon T . In practice, the optimal action-
value function Q⇤ is not known a priori, but it can be
approximated iteratively because it satisfies the Bellman
equation [38],

Q⇤(St, At) = E

Rt + � max

At+1

Q⇤(St+1, At+1)|St, At

�
.

(6)
In a DQN, the Q-value is approximated using a deep

neural network, or policy model, with parameters ✓. In
particular, the loss function at a time t is given by the
mean squared error (MSE) in the Bellman equation,

Lt(✓t) = E
⇥
(yt � Q(St, At; ✓t))

2
⇤

, (7)

where the (unknown) optimal target values are re-
placed by the approximate target values yt = Rt +
� maxAt+1 Q(St+1, At+1; ✓

�
t ) using parameters ✓�

t de-
rived from previous iterations.

A. Control Action Discretization

Continuous action space environments, such as the
compensating adjustments of our GMPS current regula-
tor, can use the DQN algorithm by discretizing the action
space directly. However, this approach scales poorly be-
cause the number of samples required to estimate the op-
timal policy (compensating setting of B:VIMIN) at some
fixed accuracy grows exponentially with the number of
input variables. To avoid this, we discretize instead the
change of control signal B:VIMIN using steps of just a few

Q(st,at) = R(st,at) + γ*Q(st+1,at+1)

Q-value: expected sum of all 
rewards R, given a state S, 
action A, and discount factor γ

Estimated 
rewards: t’≥t

Estimated 
rewards: t’>t

Actual 
reward @t

Feedback adjusts parameters so that:

Update environment/state
Reward = -|B:IMINER|

https://arxiv.org/abs/1509.06461
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Average errors appear to be significantly reduced with DQN approach
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"Episodes" initialize surrogate with different historical data.

Mean accumulated error 
observed in the historical data.

Reward accumulated by the 
DQN model from the 
Booster surrogate
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Benefit from significant past work in the Fast Machine Learning community 

Some novel aspects for the Booster control application include:

Incorporation of "guardrails":
Monitoring logic should cross-check NN controller decisions, to disable 
predictions outside a specified range.

Intel FPGA implementation: 
Extended hls4ml to the Quartus HLS toolkit, establishing fine control over 
network implementation details for a range of resource constraints.

"Live" model updates in Booster operation: 
Instead of fixing NN parameters, store in the embedded system’s shared 
memory to push periodic improvements.
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Minimize design footprint by optimizing the precision of configurable 
parameters and NN calculations.

Agreement between floating-point 
and fixed-point model decisions

Fixed-point precision

~10 bits sufficient to store all weights
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(For fixed-point operands)

Can trade serial / parallel designs 
to trade resources for latency.

Minimize design footprint by optimizing the precision of configurable 
parameters and NN calculations.

Comfortably fit within 6% of the 
target Arria10 FPGA’s resources. 12

TABLE IV. The required FPGA resources and correspond-
ing latency for the NN algorithm are shown for three possi-
ble implementations corresponding to various reuse factors.
In addition to design parameters, the maximum available re-
sources are shown for an Intel Arria 10 benchmark FPGA.
Memory logic array blocks (MLABs) are configured from ten
ALMs and hence no device maximum is shown.

reuse factor DSP BRAM MLAB ALM Register Latency

128 130 114 229 21.4 k 51.2 k 2.8µs

224 74 100 1420 40.2 k 78.3 k 4.1µs

1568 26 38 357 24.9 k 54.9 k 17.2µs

Available 1518 2713 · · · 427 k 1.7 M · · ·

of increasing reuse factor while the numbers of DSPs and
BRAMs required are inversely proportional to the reuse
factor. Variations in the required registers and ALMs
are generally not significant by comparison. These re-
sults demonstrate a range of feasible firmware imple-
mentations of the algorithm that fit comfortably within
the available resources of the GMPS control board and
1/15 sec (66.7 ms) latency budget. The ability to tune
resource usage provides significant flexibility to accom-
modate future scenarios where the NN algorithm may
significantly grow in complexity and, further, must coex-
ist on a single FPGA with additional control logic that
may present inflexible resource constraints of its own.

D. Extensions to More Complex Algorithms

Up to this point, the discussion of the hardware im-
plementation has centered around the three-hidden-layer
MLP architecture found to be performant for the GMPS
control problem in the context of RL studies described
in Section V. However, the conclusions of the studies de-
scribed above may be extended to more complex NN
algorithms providing improved GMPS performance in
tandem with the experience gained through future data-
taking campaigns.

The simplest extension to the single MLP solution,
well-motivated in the context of RL studies, is to run
inference with an ensemble of multiple copies of the net-
work in parallel on the FPGA, to improve robustness
of performance. Each NN may be programmed with a
unique set of weights, allowing for disagreement among
the models, where additional voter logic determines the
final action to be taken by the control system. This is
straightforward to achieve for models with similar com-
plexity to the one studied in Section VI C. Achieving de-
signs that consume 6% of all available resources sug-
gests that an ensemble of O(10) models is feasible.

Alternatively, instead of an ensemble of relatively sim-
ple models, more complex networks can be pursued. The
MLP architecture studied can be extended to additional
layers and larger numbers of nodes per layer maintain-

ing an acceptable footprint through corresponding ad-
justment of the reuse factor. The theoretical scaling be-
havior was shown in the calculations of Section VIA and
observed in the implementation using Quartus HLS. As
an illustrative example, one could consider a refinement
of the baseline architecture where the number of nodes
per layer is uniformly increased by a scaling factor s. In
this case, the number of required multipliers may be kept
constant by simultaneously increasing the reuse factor by
a factor of s2, at the expense of a small corresponding
increase in algorithm latency. This strategy would allow
more powerful solutions with similar footprint to take
advantage of the full latency budget of ⇡ 66 ms. More
sophisticated architectures such as convolutional and re-
current NNs may also be considered, taking advantage of
their representations as compositions of multiple dense
sub-layers. A detailed study of such possibilities is left
to future work.

VII. SUMMARY AND OUTLOOK

In this paper, we have described a method for con-
trolling the gradient magnet power supply (GMPS), an
important subsystem of the Fermilab Booster accelera-
tor, using machine learning models and demonstrated
the feasibility of embedding such a model on a field-
programmable gate array (FPGA) for a high-uptime,
low-latency implementation. We first developed a surro-
gate LSTM model, based on a recurrent neural network,
to reproduce the behaviors of the real GMPS system in
the context of the accelerator complex, establishing a
safe environment for training reinforcement learning al-
gorithms. Within this environment, we trained a deep
Q-network, based on a multilayer perceptron, to choose
an optimal action (adjustment of one control knob) to
maximize the long-term reward, taken from the negative
absolute value of the regulation error (di↵erence between
the set and observed values of the minimum GMPS cur-
rent). We found this surrogate-trained network achieved
a factor of 2 improvement over the existing controller in
terms of the achieved rewards. Finally, we implemented
this network on an Intel Arria 10 FPGA and found it re-
produces the CPU-based model, consumes less than 6%
of the total FPGA resources, and executes with a latency
as low as 2.8 µs, which bodes well for future extensions.

Real-time and operations-hardened solutions will be
critical for deploying this technology in an accelerator
control context, but we believe a large number of other
application spaces will be able to benefit from reinforce-
ment learning on embedded systems. Surrogate models
appear promising for supplying the large training data
volumes required by reinforcement learning agents. This
is particularly important for accelerator facilities where
large-scale simulations of the entire complex are absent.
Although many open questions remain, this proof-of-
principle provides confidence to test our proposed con-
cept on “live” hardware. The next steps of this work,
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• Simulation studies indicate that GMPS performance may be improved by 
a significant factor.

• Aim to deploy the new control board this spring, after Covid delay.
• Can immediately test NN controller, running as a spy
• Accumulate improved dataset with all signals measured in situ.

• In parallel, investigating new control model ideas: architectures (Larger 
MLPs and RNNs) and schemes (ensembles with decision by majority)
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• Simulation studies indicate that GMPS performance may be improved by 
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• Aim to deploy the new control board this spring, after Covid delay.
• Can immediately test NN controller, running as a spy
• Accumulate improved dataset with all signals measured in situ.

• In parallel, investigating new control model ideas: architectures (Larger 
MLPs and RNNs) and schemes (ensembles with decision by majority)


