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Taking the LHC to high luminosity
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Limitations of the Run 3 TDAQ system

Run 3 TDAQ system designed for £ = 3.0 x 10** cm~2s~! and
<u>=380

The pileup conditions at HL-LHC design luminosity dictate a
trigger rate increase by a factor of 10

Level-1 rate cannot be increased beyond 100 kHz without an
unacceptable increase in deadtime

Latency (2.5 ps) too short for elaborate algorithms

Readout and dataflow components cannot handle the increased
(> factor 20) bandwidth due to larger event sizes and rates

= Could raise requirements on physics objects, at the price of a
degraded physics programme
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The Phase-Il TDAQ system

Driving principles
e Design Phase-IIl TDAQ not just to keep what we have, but to get even better

e Maintain legacy hardware where appropriate, accomodate new detectors and exploit full detector
granularity where possible

o Learn from TDAQ-related physics limitations in Run 1-3 and avoid them (e.g. Long-lived
particles)

Constraints for Phase-Il TDAQ

e Principle constraints on rate are set by the tracker and muon small wheel readout electronics
e Space and material in Pixel and Strip detector set limit on readout bandwidth

= Maximal readout rate of 1 MHz
¢ Available memory in muon small wheel micromega sector constraints latency

= Maximal latency of 10 ys
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The Phase-Il TDAQ architecture

ATLAS Detector

srems o The baseline TDAQ design contains a single-level hardware
- trigger: Level-0

(mertracer ) ([Searmotars ) ((aon sy )

|

e Level-0 receives inputs from the calorimeter (L0OCalo) and the
muon system (LOMuon)

Global Trigger

Event
Processor

Level-0 Trigger System

o Target detector readout rate is 1 MHz with a maximum latency
of 10 s

e A new Global Trigger is introduced to perform offline-like
. algorithms

¢ The evolution into a dual-level hardware trigger system is
possible and under study

DAQ System

e The Event Filter (EF) is based on a commodity CPU farm and a
custom HTT co-processor

Event Fifter System

ariss e Target output rate to permanent storage is 10 kIHz
Computing
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The ATLAS Phase-Il Level-0 trigger | ATLAS TDAQ Phase-II TDR
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The Global Trigger | ATLAS TDAQ Phase-Il TDR
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MET
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aggregation and time multiplexing

® GEP: Global Event Processor, GCM
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o P Interface algorithms
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Global Trigger = interfacing with the Central Trigger

Processor
TDAQ FELIX Data Handle
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Global Event Pr

¢ Global Trigger aggregates full event data onto single FPGA at 40 MHz = ~ 60 Tb/s

e Data is time multiplexed for maximal flexibility and performance:
e Removes limitation on number of input trigger objects

e Decoupling from LHC bunch-crossing rate allows asynchronous and complex
algorithms (topo-clustering, jet finding) O oo
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Global Common Module Slide adapted from Shaochun Tang (BNL)

e Different functions and algorithms implemented in
firmware rather than hardware

e Global Trigger is mainly a firmware project that uses
common hardware design for each component

= Global Common Module (GCM)

e Board design conceptually similar to gFEX (ATLAS
Phase-I upgrade)

o ATCA-based board with 2 FPGAs (e.g. Xilinx
Ultrascale + VU13P), Zynq

¢ 48 GCMs in baseline design

e Prototype v2 currently being tested
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GEP data flow

e Very preliminary :
concept _

e Initial assumptions
about which
algorithms, inputs and :
outputs are required =

o With 48 GCMs pipline
depthis48 BC=1.2 us
= Ideally limit all o
algorithms to 1.2 us to fsusee |
allow for efficient
pipeline of data
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Example of challenges: TopoClustering

ATLAS S|mulat|on 2010

[ Pythia 6.425
| dijetevent *

Current offline clustering: E Mev]
e

e Clustering algorithm is controlled by three parameters for
seeding, growing, and bounding

|tan 6] - sin ¢

= Currently used: 4-2-0

o Algorithm is recursive, fully 3D and has very few restrictions,
all cells can be clustered

o A cluster splitter seeks to split large clusters into smaller ones

e Several calibration steps for all clusters

B mnutmm-;

3\_{!‘\\1 -
-0.05 0

|ta‘n°§| - €os ¢
1 Eur. Phys. J. C77 (2017) 490
Global Trigger clustering;:
¢ Impossible to run recursive, 3-dimensional algorithms in hardware
e Only sent cells with > 20 energy content to GEP = 4-2-0 clustering reduces to 4-2 clustering

O

¢ No cluster splitting or calibrations
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Example of challenges: TopoClustering o
ATLAS simulation 2010
< :ylhia 6425 e E [MeV]
. .. @ jet event . Pl 5
e Need to be very clever to make clustering efficient H *

Start processing data while still arriving

= Order of data matters!
Breaking 3D algorithm down to several 2D algorithms

°
008 :
e Stop execution of clustering after a fixed number of clustering =~ B°
steps 005 and - cos
i i eta sli
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Summary

e ATLAS TDAQ system will undergo a major upgrade for High-Luminosity LHC

e New single-layer hardware trigger will allow rate increase from 100 kHz to 1 MHz
with latency 10 us

e A new Global Trigger for topological algorithms is added

¢ Global Trigger has access to full-granularity calorimeter information
time-multiplexed on single node

e Hardware prototype has been built, firmwware in development
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BACKUP MATERIAL
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Physics drivers for Run 4+5 & ook ATLAS Simuiation ‘ I
B 280 Vs=14Tev, 30000 " 7
.. . . c [ SMHH — bb 1, 1, limit extrapolation 1
e Precision measurements of the properties of the Higgs boson fé 24 v semetrut i gy &
E.g. Coupling to fermions, coupling to W/Z, diff. xsections, S gl feman ey scnge foccopance E
Self-coupling, Higgs + invisible s =" ]
(%] F o ;
s & ]
e Precision Standard Model measurements FERE: S . 1
E.g. Forward/backward asymmetry, Vector-boson scattering, S e ]
Precision top mass and xsection § T 25 30 35 20
Lepton P, Threshold [GeV]
e Searches for BSM signatures E.g. Searches for new vector g 05¢ T A T
S 0455 ATLAS Simulation
bosons, electroweak SUSY, Dark Matter, new resonances, g Vs=14Tev
long-lived particles 3 . é Compressed SUSY
g P 2 0‘35§ (m =220 GeV,m, = 200 GeV)

ZH'5 vvbb o

Flavour Physics E.g. Lepton flavour violation, FCNC in top
decays, rare B-meson decays

Target ‘No
Threshold {Upgrade

1Y I FEY P T AT TR IRATE Ieeme

¢ Heavy-Ion Physics
E.g. Light-by-light scattering, Quarkonia production

| i N
150 200 250 300 350 400
Missing Energy Threshold [GeV]
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The Athena TopoClusterMaker

e The Athena offline TopoClusterMaker can be found here: CaloTopoClusterMaker.h

¢ Documentation of the clustering is given in this document

e Algorithm is controlled by three parameters {S, N, P} for seeding, growing, and
bounding; currently used: 4-2-0

e Step 0: Create list of all cells including eta, phi, energy and signal over noise

Ceell = |Ecett|/ 0 cell,noise

e Step 1: Find seed cells with energy > S (in allowed samplings) and order them
according to largest (., all seeds form proto-clusters

o Step 2: Grow the proto-cluster by checking all neighbouring cell energies and make
sure each cell is only used once
Neighbour: two directly adjacent cells in same sampling, or cell in adjacent layer if
some overlap in (17, ¢) plane, multiple subsystems allowed
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The Athena TopoClusterMaker

Depending on energy different actions are taken:

® Epcighbour > 51 Merge proto-clusters
S > Epeighbour > N: Add cell to proto-cluster and consider its neighbours in next iteration

L]
® N > Eneighbour > P+ Add cell to proto-cluster
° Eneighbour < P: No action
If a neighbouring cell is attached to two different proto-clusters the clusters are
merged ATLAS simulation 2010
e Step 3: Perform step 2 iteratively until no more [Pytna6azs T e
neighbouring cells with energy > N are found s i

e Step 4: Order clusters in energy

E [MeV]
10

|tan 6| - sin ¢

10*

e Algorithm is recursive, fully 3D and has very few restrictions,
all cells can be clustered
e Only absolutes are considered, negative energy clusters possible

o A cluster splitter seeks to split large clusters into smaller ones [ 005 =

0.05
|tan 6] - cos ¢
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