Liquid Argon TPC Trigger Development with MicroBooNE & SBND

Daisy Kalra

on behalf of MicroBooNE & SBND collaborations

Columbia University

CPAD-2021
March 18, 2021
Contents

• Motivation
• Introduction to MicroBooNE and SBND
• TPC Readout Electronics
• TPC Trigger Strategy
• Trigger Approaches
• Future Possibilities
• Summary
Motivation

DUNE: World’s largest LArTPC neutrino experiment (once constructed), will start taking data ~2026.

Data rates in DUNE:
- up to >1 million readout channels
- 2 MHz x 12 bit ADC digitization
- >5 TB/s data rate!

- One of the DUNE physics goals is to search for non-beam events (rare events) such as neutrinos from Supernova burst,
 (up to ~few thousand interactions over first 10 seconds, but ~once per century)
Motivation

DUNE: World’s largest LArTPC neutrino experiment (once constructed), will start taking data ~2026.

Data rates in DUNE:
- up to >1 million readout channels
- 2 MHz x 12 bit ADC digitization
- >5 TB/s data rate!

- One of the DUNE physics goals is to search for non-beam events (rare events) such as neutrinos from Supernova burst, (up to ~few thousand interactions over first 10 seconds, but ~once per century)
- proton decay (baryon number violation process) (<1 interaction per year).

Daisy Kalra, Columbia University
Motivation

DUNE: World’s largest LArTPC neutrino experiment (once constructed), will start taking data ~2026.

Data rates in DUNE:
- up to >1 million readout channels
- 2 MHz x 12 bit ADC digitization
- >5 TB/s data rate!

- One of the DUNE physics goals is to search for non-beam events (rare events) such as neutrinos from Supernova burst, (up to ~few thousand interactions over first 10 seconds, but ~once per century)
- proton decay (baryon number violation process) (<1 interaction per year).

Requires continuous readout with ~100% live time and self-triggering.
Current LArTPC detectors such as MicroBooNE and SBND, which share functionally identical back-end readout electronics, can be exploited to demonstrate and develop TPC-based trigger.
Liquid Argon Time Projection Chamber (LArTPC)

- Neutrino interactions with Ar nuclei leave a trail of ionization electrons, drift towards anode under uniform electric field.

- Two induction planes (U & V) wires: orientation: @ 60° w.r.t vertical
 Collection plane (Y) wires: vertically oriented to enable 3D reconstruction of collected ionization tracks.

- PMTs located behind the anode planes capture prompt scintillation light and hence achieve 3D reconstruction along with the wire signal information.

- High spatial resolution and calorimetry for excellent particle identification.
MicroBooNE and SBND
Part of Short Baseline Neutrino Program at Fermilab

MicroBooNE

- 89 tons active* LAr volume
- 8256 TPC wires (2MHz)
- 32 8” PMTs (64 MHz digitization)
- Data Rates: 33 GB/s

SBND

- 112 tons active* LAr volume
- 11264 TPC wires (2MHz)
- 120 8” PMTs (500 MHz digitization)
- Data Rates: 45 GB/s

*Maximum volume that can be used for physics analysis.

Functionally identical back-end readout electronics (digital processing electronics) in both experiments.
MicroBooNE and SBND

Part of Short Baseline Neutrino Program at Fermilab

- **MicroBooNE**
 - 89 tons active* LAr volume
 - 8256 TPC wires (2MHz)
 - 32 8” PMTs (64 MHz digitization)
 - **Data Rates:** 33 GB/s

- **SBND**
 - 112 tons active* LAr volume
 - 11264 TPC wires (2MHz)
 - 144 8” PMTs (500 MHz digitization)
 - **Data Rates:** 45 GB/s

*Maximum volume that can be used for physics analysis.

MicroBooNE is currently in R&D measurement phase offers a unique opportunity to demonstrate and develop TPC self-triggering.
TPC Readout electronics (MicroBooNE)

The TPC readout electronics shapes, amplifies, digitizes and records the signal induced on anode wire planes and pass it to downstream data acquisition (DAQ) system.

NU stream Losslessly compressed data associated with event triggers.

SN stream Continuous data stream compressed with some data loss and is continuously readout frame by frame (1 frame = 1.6 ms).
TPC Readout electronics (MicroBooNE)

The TPC readout electronics shapes, amplifies, digitizes and records the signal induced on anode wire planes and pass it to downstream data acquisition (DAQ) system.

NU stream Losslessly compressed data associated with event triggers.

SN stream Continuous data stream compressed with some data loss and is continuously readout frame by frame (1 frame = 1.6 ms).
Data Streams (MicroBooNE)

- ADC count
- Input
- NU stream
- SN stream
- Start of a run
- 1.6 ms frame
- Time tick

Cartoon display
Data Streams (MicroBooNE)

- NU stream: On receiving an external trigger, 4.8 ms of data is readout.
- SN stream: Regions of interest (ROI) are extracted, whenever a waveform crosses a certain threshold.

Cartoon display

External Trigger

1.6 ms

3.2 ms

Start of a run

Time tick

Channel dependent threshold

ADC count

Input

NU stream

SN stream

1.6 ms frame

3.2 ms

Cartoon display
Data Streams (MicroBooNE)

- NU stream: On receiving an external trigger, 4.8 ms of data is readout.
- SN stream: Regions of interest (ROI) are extracted, whenever a waveform crosses a certain threshold.
Data Streams (MicroBooNE)

- NU stream is saved every time there is a trigger and then is diverted to Sub Event Buffers (SEBs) and then to Event Builders to build events (Data used for beam physics measurements)

- SN stream is saved to drive and is written to disk on receiving a SuperNova Early Warning System (SNEWS) alert (Data to search for non-beam events).
Which events to trigger on?

MicroBooNE, being situated on-surface, has a lot of cosmogenic activities.
Interesting events to trigger

- Some of the interesting interactions to trigger on include stopping muons, cosmogenic anti-proton or anti-neutron annihilation.
TPC Trigger Strategy

• Following DUNE trigger strategy, trigger primitives (TPs) can be constructed from MicroBooNE’s SN stream ROIs.
TPC Trigger Strategy

- Following DUNE trigger strategy, trigger primitives (TPs) can be constructed from MicroBooNE’s SN stream ROIs.

TPs are defined as a “summary” of an ROI:

- Integral
- Amplitude
- Time over threshold
TPC Trigger Strategy

• Following DUNE trigger strategy, trigger primitives (TPs) can be constructed from MicroBooNE’s SN stream ROIs.

• TPs can be used to make an online TPC trigger decision (TD) (in CPUs or GPUs) by constructing higher-level TPC triggered objects.
Trigger Approaches

Michel electron candidate event display
(MicroBooNE’s ROI)

An example of applying TP generation to ROIs.
(ROI integral)

Hits are found by offline Gaussian Hit Finder Module
Current Status for Online Trigger Development

- TP generation has been implemented in FPGA for real-time implementation and testing in MicroBooNE (& SBND in near-future).

- Working towards TP processing software and algorithms for online trigger generation.
Current Status for Online Trigger Development

- TP generation has been implemented in FPGA for real-time implementation and testing in MicroBooNE (& SBND in near-future).

- Working towards TP processing software and algorithms for online trigger generation.

<table>
<thead>
<tr>
<th>Header</th>
<th>Left 16bit</th>
<th>Description</th>
<th>Right 16bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0xF...</td>
<td>contains FEM physical (slot) address in crate in the lowest 5 bits and FEM ID in the next 3 bits</td>
<td>0xFFF00</td>
<td>contains upper 12 bits of number of ADC words from FEM for this event</td>
</tr>
<tr>
<td>2</td>
<td>0xF...</td>
<td>contains lower 12 bits of number of ADC words from FEM for this event</td>
<td>0xFFF00</td>
<td>contains upper 12 bits of event number</td>
</tr>
<tr>
<td>3</td>
<td>0xF...</td>
<td>contains lower 12 bits of event number</td>
<td>0xFFF00</td>
<td>contains upper 12 bits of frame number</td>
</tr>
<tr>
<td>4</td>
<td>0xF...</td>
<td>contains lower 12 bits of frame number</td>
<td>0xFFF00</td>
<td>contains upper 12 bits of frame number</td>
</tr>
<tr>
<td>5</td>
<td>0xF000</td>
<td>contains lower 12 bits of frame number</td>
<td>0xFFF00</td>
<td>contains upper 12 bits of frame number</td>
</tr>
<tr>
<td>6</td>
<td>0xF000</td>
<td>contains lower 12 bits of frame number</td>
<td>0xFFF00</td>
<td>contains upper 12 bits of frame number</td>
</tr>
<tr>
<td>7</td>
<td>0xFFF000</td>
<td>contains lower 12 bits of frame number</td>
<td>0xFFF000</td>
<td>contains upper 12 bits of frame number</td>
</tr>
<tr>
<td>8</td>
<td>0xFFF0000</td>
<td>contains lower 12 bits of frame number</td>
<td>0xFFF0000</td>
<td>contains upper 12 bits of frame number</td>
</tr>
<tr>
<td>9</td>
<td>0xFFF00000</td>
<td>contains lower 12 bits of frame number</td>
<td>0xFFF00000</td>
<td>contains upper 12 bits of frame number</td>
</tr>
<tr>
<td>10</td>
<td>0xFFF00000</td>
<td>contains lower 12 bits of frame number</td>
<td>0xFFF00000</td>
<td>contains upper 12 bits of frame number</td>
</tr>
<tr>
<td>11</td>
<td>0xFFF00000</td>
<td>contains lower 12 bits of frame number</td>
<td>0xFFF00000</td>
<td>contains upper 12 bits of frame number</td>
</tr>
<tr>
<td>12</td>
<td>0xFFF00000</td>
<td>contains lower 12 bits of frame number</td>
<td>0xFFF00000</td>
<td>contains upper 12 bits of frame number</td>
</tr>
<tr>
<td>13</td>
<td>0xFFF00000</td>
<td>contains lower 12 bits of frame number</td>
<td>0xFFF00000</td>
<td>contains upper 12 bits of frame number</td>
</tr>
<tr>
<td>14</td>
<td>0xFFF00000</td>
<td>contains lower 12 bits of frame number</td>
<td>0xFFF00000</td>
<td>contains upper 12 bits of frame number</td>
</tr>
<tr>
<td>15</td>
<td>0xFFF00000</td>
<td>contains lower 12 bits of frame number</td>
<td>0xFFF00000</td>
<td>contains upper 12 bits of frame number</td>
</tr>
</tbody>
</table>

6 32-bit FEM header words

<table>
<thead>
<tr>
<th>FFFFFFFF</th>
<th>F1E3FFFF</th>
<th>F6A8F001</th>
<th>F003F000</th>
<th>F002F000</th>
<th>F000F000</th>
<th>F000F000</th>
<th>107F4792</th>
</tr>
</thead>
<tbody>
<tr>
<td>C000C000</td>
<td>C000C000</td>
<td>C000C000</td>
<td>E0000000</td>
<td>FFFFFFFF</td>
<td>F1E3FFFF</td>
<td>F6A8F001</td>
<td>F003F000</td>
</tr>
<tr>
<td>F002F000</td>
<td>F000F000</td>
<td>F000F000</td>
<td>108049A2</td>
<td>C060C05D</td>
<td>C030C154</td>
<td>C006C822</td>
<td>E0000000</td>
</tr>
<tr>
<td>F1E3FFFF</td>
<td>F6A8F001</td>
<td>F003F000</td>
<td>F002F000</td>
<td>F000F000</td>
<td>F000F000</td>
<td>F000F000</td>
<td>10814993</td>
</tr>
<tr>
<td>C042C20E</td>
<td>C008C7B8</td>
<td>C001C201</td>
<td>E0000000</td>
<td>FFFFFFFF</td>
<td>F1E3FFFF</td>
<td>F6A8F001</td>
<td>F003F000</td>
</tr>
<tr>
<td>F002F000</td>
<td>F000F000</td>
<td>F000F000</td>
<td>108249A1</td>
<td>C0063C848</td>
<td>C031C141</td>
<td>C006C822</td>
<td>E0000000</td>
</tr>
<tr>
<td>F5E5FF5E</td>
<td>F4125F001</td>
<td>F0035000</td>
<td>F002F000</td>
<td>F000F000</td>
<td>F000F000</td>
<td>10834992</td>
<td></td>
</tr>
<tr>
<td>F6A8F001</td>
<td>F003F000</td>
<td>F000F000</td>
<td>F000F000</td>
<td>F000F000</td>
<td>F000F000</td>
<td>F000F000</td>
<td>10854991</td>
</tr>
<tr>
<td>C05CC060</td>
<td>C036C13C</td>
<td>C006C821</td>
<td>E0000000</td>
<td>F002F000</td>
<td>F000F000</td>
<td>F000F000</td>
<td>F000F000</td>
</tr>
</tbody>
</table>
Current Status for Online Trigger Development

- TP generation has been implemented in FPGA for real-time implementation and testing in MicroBooNE (& SBND in near-future).

- Working towards TP processing software and algorithms for online trigger generation.

<table>
<thead>
<tr>
<th>Word # / Bit #</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time over threshold (number of values)</td>
<td>MSB</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Integral</td>
<td>MSB</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Integral over 12 samples</td>
<td>MSB</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Amplitude</td>
<td>MSB</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Channel header(0x1..),

TP header (0x[4..7]), unique Id

TP Payload

```
$FFFFF F1E3FFF F6A8F001 F003F000 F002F000 F000F000 F000F000 107F4792
C000C000 C000C000 C000C000 E0000000 FFFFFFF F1E3FFF F6A8F001 F003F000
F002F000 F000F000 F000F000 108049A2 C060C05D C030C154 C006C822 E0000000
FFFFFFFF F1E3FFF F6A8F001 F003F000 F002F000 F000F000 F000F000 10814993
C042C20E C008C7B8 C001C201 E0000000 FFFFFFF F1E3FFF F6A8F001 F003F000
F002F000 F000F000 F000F000 108249A1 C063C848 C031C141 C006C822 E0000000
FFFFFFFF F1E3FFF F6A8F001 F003F000 F002F000 F000F000 F000F000 10834992
C045C7F0 C008C7AB C001C200 E0000000 FFFFFFF F1E3FFF F6A8F001 F003F000
F000F000 F000F000 108449A1 C06CC060 C036C13C C006C821 E0000000
E3FFF F6A8F001 F003F000 F002F000 F000F000 F000F000 10854991
```
Trigger Approaches

- TP generation has been implemented in FPGA for real-time implementation and testing in MicroBooNE (& SBND in near-future).

- Working towards TP processing software and algorithms for online trigger generation.

- TPs stream to DAQ servers for online processing with a goal of generating TD.

- TD can be used to select the buffered SN readout data for subsequent event building.
Trigger Approaches

• One can look for stopping muons, *by looking at straight tracks making use of topological (existence of kink) and calorimetric (change in dE/dx at bragg peak) information to trigger on.

• There is also a possibility of exploring image classification, rather than having to cluster TPs to make a track to construct high lever trigger objects.

*Michel Electron Reconstruction Using Cosmic Ray Data from MicroBooNE LArTPC (MicroBooNE Collaboration), JINST 12 (2017) 09, P09014
Machine Learning (ML) based Trigger Approach

Image classification

Classification will be done based on Activity

Low energy activity \rightarrow \text{Low energy activity}

High energy Michel \rightarrow \text{High energy Michel}

High energy Annihilation \rightarrow \text{High energy Annihilation}

Low energy activity \rightarrow \text{Supernova neutrino events}

High energy activity \rightarrow \text{Michel electron, anti-neutron or anti-proton annihilation}
Future Possibility

• For future experiment such as DUNE, there is a possibility to use ML tools on specialized hardware like Field Programmable Gate Array (FPGA).

• Our group is also working on deploying CNN on FPGA (hardware stage of data selection, using HLS4ML tools*) as it is much more power efficient.

• Preliminary results on ROI downsized images.

*Please refer to the other talks in TDAQ Session of CPAD-2021 for more details
Future Possibility

• For future experiment such as DUNE, there is a possibility to use ML tools on specialized hardware like Field Programmable Gate Array (FPGA).

• Our group is also working on deploying CNN on FPGA (hardware stage of data selection, using HLS4ML tools*) as it is much more power efficient.

• Preliminary results on ROI downsized images.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Train Size</th>
<th>Test Size</th>
<th>Accuracy (%)</th>
<th>Inference Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>12,023</td>
<td>4,027</td>
<td>ε_{NB} 99.53</td>
<td>0.12</td>
</tr>
<tr>
<td>LE</td>
<td>12,050</td>
<td>3,970</td>
<td>ε_{LE} 4.01</td>
<td>1.51</td>
</tr>
<tr>
<td>HE</td>
<td>10,137</td>
<td>3,417</td>
<td>ε_{HE} 3.63</td>
<td>90.22</td>
</tr>
</tbody>
</table>

NB: Noise & Background
LE: Low Energy
HE: High Energy

*Accelerating Deep Neural Networks for Real-time Data Selection for High Resolution Imaging Particle Detectors
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8909784&tag=1
Summary

With the currently & soon to be operating MicroBooNE & SBND LArTPCs, we have an exciting opportunity to:

- Carry out dedicated demonstrations for DUNE TPC trigger design.
- Develop novel (ML based) LArTPC trigger techniques for online or real-time data processing.
- Enhance future SBND and DUNE physics program.

Timeline:

<table>
<thead>
<tr>
<th></th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MicroBooNE: TPC trigger deployment

SBND: SBND Trigger Commissioning (beam, photon detectors) TPC trigger deployment
Thank you