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Overview

* We present SONIC, a framework for integrating GPUs and
FPGAs as a service (aaS) into physics workflows

* We present case studies of integrating GPUs/FPGAs aaS into:

 LHC experiments: GPU paper, FPGA paper

* neutrino experiments: ProtoDUNE paper

e Gravitational waves: LIGO denoising talk



https://iopscience.iop.org/article/10.1088/2632-2153/abec21
https://www.computer.org/csdl/proceedings-article/h2rc/2020/235400a038/1pVHdDr0PzG
https://www.frontiersin.org/articles/10.3389/fdata.2020.604083/full
https://indico.cern.ch/event/924283/contributions/4105332/

Introduction

 Computing needs at LHC experiments will outpace expected
growth in CPU performance
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 Compounded by interest in DL algorithms
* Pervasive in analysis context, but slowly moving to data taking

* Coprocessors (GPUs, FPGAs, '3;') are a solution to this problem



Connecting to coprocessors...
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Communicating with coprocessors as a service:
1. Enables integration of coprocessors without larger redesign of computing system
2. Removes burden of writing any algorithm-specific coprocessor code
3. Is heterogeneous friendly
» Can flexibly configure coprocessor type, number of coprocessors per server, ...
 Many coprocessors to choose from
4. Leverages highly optimized inference tools developed by industry

Considerations: added network load, load A?alancer, sufficient algorithm speedup



SONIC

Services for Optimized Network Inference on Coprocessors

Integrates as-a-service requests into HEP
workflows

Formats event data for algorithm input
Makes non-blocking, asynchronous requests
Works with any coprocessor

Integrated into CMS software
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SONIC

Services for Optimized Network Inference on Coprocessors

* For fast inference we focus on remote procedure call (QRPC) protocol

e Use Triton inference server for inference on NVIDIA GPUs
* Developed custom FPGAs-as-a-Service Toolkit (FaaST) for FPGA

gRPC

CPU Client PCle| Coprocessor
GRPC Server «—»
. CM ft . FPGA, GPU, ...
(6g. CMS software) (eg. Cloud instance) 6g. FPGA, GPU, ..)

gRPC 1. Runs the inference

1. Formats inputs

2. Sends asynchronous, non-
blocking gRPC call

3. Interprets response

Tools
his 4 ml Wrote our own FPGA

Use NVIDIA triton inference server for

,@ nVIDI AGPU + Customized GCP Kubernetes  §™ X|| INX 9RPC inference server
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LHC data flow
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LHC data flow

40 MHz
320 Tb/s

Radiation
Hard ASICs

Fast
10 us window
L1 Trigger

Intermediate
<500 ms window
High Level Trigger

This work focuses on introducing

1 kHz
10 Gbr/s

10 s window
Offline Cluster

DL+heterogeneily in data taking
See Jim Hirschauer's talk See Jennifer Ngadiuba’s talk
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Analysis
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https://indico.fnal.gov/event/46746/contributions/210450/
https://indico.fnal.gov/event/46746/contributions/210997/

Benchmark algorithms for HEP

e Gains at large batch and large algorithm complexity/operations
* The algorithm has to be sufficiently sped-up for transfer to not reduce throughput
e Each algorithm performs as well on physics objects than a corresponding CPU algorithm
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Server with
GPUs/FPGAs

Online reconstruction

* Simplest point of integration aaS: hadron calorimeter local
reconstruction algorithm: low latency, high batch

» Scale test of the CMS High Level Trigger (HLT) in Google Cloud

 HLT instances and server deployed at same site

2007.10359
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Online reconstruction

Server with
GPUs/FPGAs

* Simplest point of integration aaS: hadron calorimeter local
reconstruction algorithm: low latency, high batch

» Scale test of the CMS High Level Trigger (HLT) in Google Cloud

 HLT instances and server deployed at same site

1. 10% reduction in CMS HLT latency
* Removes HCAL from HLT budget

2. 300 HLT instances can be serviced by a

single GPU
3. No network concerns intra-site
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Server with
GPUs/FPGAs

dWS

Online reconstruction

o HLT test with HCAL reconstruction executed on FPGA server
« Uses pipeline of all super logic regions (SLRs) of FPGA
* Developed FPGA-as-a-service Toolkit for FPGA servers
 Limiting factor is 25 Gb/s into FPGA (batch 16000)
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Server with
GPUs/FPGAs

dWS

Online reconstruction

o HLT test with HCAL reconstruction executed on FPGA server
« Uses pipeline of all super logic regions (SLRs) of FPGA

* Developed FPGA-as-a-service Toolkit for FPGA servers
 Limiting factor is 25 Gb/s into FPGA (batch 16000)
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Limit without 25 Gb/s bottlengck is 5500 simultaneous processes
2010.08556



ProtoDUNE

 ProtoDUNE is a testbed for the Deep Underground Neutrino Experiment
« 2/3 of the reconstruction workflow latency is from EmMichelTrackld

e 2D CNN classifies electron as a track, shower, or Michel electron
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ProtoDUNE

 ProtoDUNE is a testbed for the Deep Underground Neutrino Experiment
» 2/3 of the reconstruction workflow latency is from EmMichelTrackld

e 2D CNN classifies electron as a track, shower, or Michel electron
* Deploying to GPUs as a service reduces algorithm latency by 17x

* Reduces entire compute by 2.7x
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Multi-messenger astrophysics

* Gravitational waves, photons, neutrinos, and cosmic rays carry
complementary information about astrophysical events

* Fast inference of LIGO information could help telescopes orient faster
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Multi-messenger astrophysics

* Gravitational waves, photons, neutrinos, and cosmic rays carry
complementary information about astrophysical events

* Fast inference of LIGO information could help telescopes orient faster

Gamma rays, 50 to 300 keV GRB 170817A
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Multi-messenger astrophysics: LIGO

 End-to-end from noisy LIGO strain time series to classification
 Ensemble of two CNNSs
1. denoising (2005.06534)
2. binary black hole merger classification (1701.00008)

* Working on a full demonstration of real-time GW processing
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Next steps

Explore HPCs

 Expand to more physics problems (e.qg.
clustering, jet tagging) with new
architectures (e.g. graph neural
networks, particle clouds)

mNoed eb oot calfeilerk oo oK o ffa ook oK oug

HPC

* |Investigate new coprocessors (eg

Intelligence Processing Unit)
HCAL clustering

Event as input set Event as graph Transformed input
X = {x;} X={x},A=4; H={h}
Efficient CNNs (1907.03739) ® o Graph buiding Message passing 5 _ %
(a) Voxel-Based Fe ggregation (Coa . [ |
Pk dmmd LSH+KNN Eeme o — I .
.'. o Voxelize Convolve Devoxelize g(Xl W) —A X g(X A | W) H | -
. o c ° ’ ]
[ Normatize | Fuse Targetset Y =y, Output set Y’ = {y/} l
RTTI o tvereretesssverseesestietesseresntataseeresasesssasntnseesesssrassanseraentossere SRy Decoding
sressesnss Multi-Layer Perceptron (MLP) cooeeeeeenennnnninis N Elementwise loss L(y;, )’;) elementwise
""""""""""""""""""""""""""""""""""""""""""""""""""""""""" ’ classification & regression FFN
(b) Point-Based Feature Transformation (Fine-Grained) g(xi, hi | W) — yil

Graph neural networks

19




Summary

As-a-service paradigm introduces coprocessors to HEP with minimal
changes to pre-existing computing workflows

SONIC enables user to write simple client code, offloading heavy
algorithms onto optimized inference servers with asynchronous call

FPGA integration added through FPGA-as-a-service Toolkit

Demonstration of scaled CMS HLT sped-up with hadron calorimeter
reconstruction performed on GPUs and FPGAs

SONIC can serve as a useful tool for online and offline LHC reconstruction

SONIC framework provides value for other physics experiments, including
protoDUNE and LIGO
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Triton Inference Server

Client sends request
over network

Server receives
request

Server queues and
schedules request

The number of connected
GPUs/FPGAs is scaleable;
each has an instance of
each model

Network

MODEL REPOSITORY
(Persistent Volume)

Models are stored in
local repository

Server Model
Request/Response Handling Management

Dog
Cat

Inference Request Inference Response

Many model formats
Eramework (TensorFlow, Pytorch,
TensorRT, ...)

Per-model
Backends

Scheduler Queues

Scheduler

Output monitoring
information

STATUS/HEALTH METRICS EXPORT
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Tools

Our tools for prototyping CMS reconstruction as-a-service
1. Google Cloud/Amazon Web Services/Microsoft Azure

2. T2/T3 clusters
3. local server/accelerator hardware
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GPU,FPGA ‘
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‘ UE'%D A Azure

Building a network of
% heterogeneous resources in
the cloud and on-premises
kubernetes

Work-in-progress: how to
coordinate and orchestrate

A& distributed heterogeneous

dOC er resources

We have a wide network of resources, and perform at-
scale tests with many different client-servers

configurations, with servers both remoteZSand on-site
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FACILE Server (& Ufis+his 4 mi)

* Use Vitis Accel to manage data transfers, kernel execution
e Basic scheduling:
e Copy batch 16000 inputs from host to FPGA DDR

e Run hlsdml kernel

 Tuned for low latency,

ipeli ' ® Host M
pipelined, ~104 ns/inference CPU »  Host Memory

Global Memory +

Host "| constant Memory
e Copy 16000 batch outputs /
from FPGA DDR to host

i ] Compute Compute
e Server responsible for transferring Il Unit Unit @ > Local Memory
input to dedicated buffers in et
host memory Compute |
Unit @ » Private Memory

Device

e Set up for Alveo U250, AWS f1
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FACILE Server (& s +his 4 mi)

* Large amount of server optimization Alveo U250
. . - his4ml_3
e (Can create multiple copies of S SLR3
his4ml inference kernel on separate st e
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High bandwidth test

 What is the feasibility of remote server operation?

 High bandwidth, long distance test (MIT to Google Cloud in lowa)

* Throughput scales linearly with number of GPUs

» Tests are stable up to 70 Gb/s (no special links)

* Far exceeding any realistic use case (offline reco is 10 Gb/s)
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* |Inference performed in CMS workflow

* Larger models saturate with fewer clients,

Throughput Tests (GPU) o,

lower throughput

* Range of performance for GPUs
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Throughput Tests (FPGA)

NG T

e \With small FACILE network, server
able to process over 5000 events/s

e |Limitation from CPU

* ResNet performance depends on hardware/specs
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Dynamic Batching

Allows server to wait for
requests to build up

CPU
#H2

CPU
Most beneficial for small-batch [l #1 |]

algorithms

Can extend event-by-event
processing to multi-event
processing

* Transparent to user

Single-line change to server
configuration

30

, dynamic_ batching { ‘
f preferred batch size: [ 100 ] ¢

Can also specify max wait time
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Witnesses
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