

FAST ELECTRONICS FOR LGADs

CPAD MEETING FAST ELECTRONICS FOR TIMING DETECTORS

ISAR MOSTAFANEZHAD FOUNDER & CEO at NALU SCIENTIFIC, LLC

MARCH 19, 2021

isar@naluscientific.com

Work partially funded by various US DOE SBIR Awards

TECHNOLOGY

Waveform Digitizing for Time of Flight Detection: COMPACT, LOW COST, LOW POWER

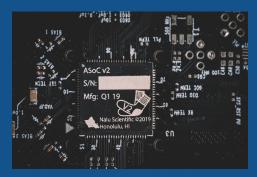
APPLICATIONS **OUR TECHNOLOGY INTEGRATION** AARDVARCV SoC v3 ODS v1 BV UPAC MEG: 02 18 VARIOUS FRONT-END CHIPS SENSORS MAIN APPLICATIONS Event based digitizer+DSP \succ SiPM **HEP/NP** Readout \succ \succ 4-32 channel scope on chip PMT \succ \succ 1-15 Gsa/s, 12 bit res. LAPPD \succ \succ SECONDARY APPLICATIONS

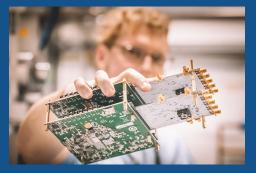
Antenna arrays

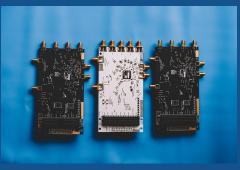
 \succ

Low SWaP

User friendly


Low cost


 \succ


 \succ

 \succ

- Electron collider experiments
- > Beam diagnostics
- > Plasma/Fusion diagnostics
- ≻ Lidar

ABOUT NALU SCIENTIFIC

Fast Growing Startup in Honolulu, HI \$11M in committed funding (US DOE SBIRs, contracts) 15 Employees

Integrated Circuits Design

Analog + digital System-on-Chip (SoC) Mixed mode design

Hardware Design

Field Programmable Gate Arrays (FPGA) Complex RF multi-layer Printed Circuit Board (PCBs)

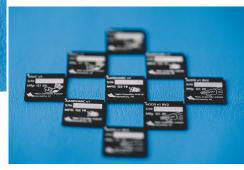
Expertise in:

Fast timing Radiation detection Readout electronics for Particle Physics

Current SoC-ASIC Projects

Project	Sampling Frequency (GHz)	Input BW (GHz)	Buffer Length (Samples)	Number of Channels	Timing Resolution (ps)	Available Date
ASoC	3-5	0.8	16k	4	35	Rev 3 avail
HDSoC	1-3	0.6	4k	64	80-120	Mar'21
AARDVARC	8-14	2.5	32k	4-8	4-8	Rev 3 avail
AODS	1-2	1	8k	1-4	100-200	Rev 1 avail
STRAWZ	4-6	1.5	4k	64	5-10	2022

- ASoC: Analog to digital converter System-on-Chip
- HDSoC: SiPM specialized readout chip with bias and control
- AARDVARC: Variable rate readout chip for fast timing and low deadtime
- AODS: Low density digitizer with High Dynamic Range (HDR) option
- STRAWZ: Streaming Autonomous Waveform-digitizer with Zero-suppression



AODS v1 BV2 S/N:

All chips, are designed with commercial grade tools and licenses and can be sold once commercialized.

The AC-LGAD Challenge

- 1. Newly introduced AC-LGADs:
 - a. Thin Finely segmented detector
 - b. 20-300 um footprint,
 - c. 180 ps rise time
- 2. Is WFD beneficial? Maybe!
 - a. First need to shrink WFD => HPSoC
 - b. WFD may enable PSD, charge sharing, etc
 - c. WFD may reduce overall need for fine pixels
 - d. Preliminary feature extraction on chip
- 3. Lots of unknowns: Readout, Packaging, Scaling, etc
- 4. Smaller nodes also attractive: 22, 28nm

Table 1. State of the art readout ASICs with or without waveform storage and/or <u>digitization_capability</u>, compared ¹ requires a patented calibration mechanism; ² in a future <u>revision;</u> <u>chip</u> currently fabricated; <u>chip</u> in design stage; <u>effectively much larger with virtualization</u>

Name	Tech (nm)	#Ch	Speed (GSa/s)	Buffer Depth (samples)	Power/ch (mW)	Accuracy (uncorrected/corrected)	ADC	Features	Commercial
SST [SST]	250	4	2	256	40	4.3 ps/2.37 ps	No	-	No
DRS4 [DRS4]	250	9	5	1024	17.5	10ps/1.8ps1	No	-	Yes
PSEC4 [PSEC4]	130	6	4-15	256	16.7	1.9 ps	yes	-	No
SAMPIC [Samp]	180	16	3-8.4	64	11.3	35 ps /5 ps	Yes	-	No
LAB4D [LAB4D]	250	1	4	4096	240	10 ps	Yes	-	No
IRSX [IRSX]	250	8	2.8	32768	125	18 ps	Yes	-	No
SiREAD [SiREAD]	250	32	1	2048	40	<100 ps	Yes		Yes
aardvarc [aardvarc]	130	4/8	10-15	32768	70	<5 ps at 13.8Gsa/s	Yes	Feature Extraction 2, Self Calibration, Serial	Yes
HdSoC ³	250	64	1-2	2048	20	<100 ps	Yes	Feature Extraction, Serial	Yes
STRAWZ₄	65	64	5	2048	<20	<10 ps	Yes	Filtering, Feature extraction, Zero suppression, streaming	Yes
HPSoC	65	100+	10+	256	<2	<5 ps	Yes	Easy integration with sensor arrays, pre- amplification, feature extraction, channel fusion	Yes

- We have several interesting HEP/NP electronics projects
- We would love to get feedback from end users like you.
- Check us out and follow our updates::
 - Our website: <u>www.naluscientific.com</u>
 - LinkedIn: <u>https://www.linkedin.com/company/naluscientific</u>

THANK YOU QUESTIONS OF COMMENTS

0 Z

0

С

C

HAWA

20

∩0

RVING

З В

DESIGNING CUTTING-EDGE TOOLS .