Tracker Simulation Studies

Tassielli G.F.INFN Lecce & Università del Salento

12/08/20

MU2e-II tracker workshop

Requirements (for a first step)

- Test different options (considering different technologies too):
 - Mu2e configuration with reduced straw material
 - Drift chamber alternative
 - □ radial TPC based on u-well technologies
 - □ A tracker based on light Si sensors (Mu3e like)
- Investigate if other devices can improve the main tracker resolution, as an example replace the IPR with an active device or have a device as close as possible to the targets, possible options:
 - use u-well detectors
 - use a Si or Diamond pixel detectors
- Evaluate the momentum resolution
- Evaluate radiation impact on the detectors
- etc. ...
- (for final studies we have to use the Mu2e framework)

Actual status

We need a modular and configurable software tool to performe the first relative comparisons.

At the present stage, we could use two tools:

- FastSim (D. Brown)
- a geant4 based simulation + ROME framework + genfit2

FastSim status

It was used during the first stage of Mu2e, more details in docs: 1446-v3, 1370-v1:

- geometry description is fully controlled by the configuration file
- «simplified (not all geometrical elements)» detector geometry
- «simplified (respect to geant4)»
 simulation of the material interactions
- reconstruction based on KF (parent of the Mu2e KF)
- gradient Magnetic field included
- DIO background modeled

Actual status:

- It was not maintained for a long time
- but Dave «updated and compiles using cmake, take a look at CMakeLists.txt» (https://github.com/brownd1978/FastSim)
- work is needed to remove old dependences
- recover and test old Mu2e work

Geant4 based simulation status

It was created by extracting the I-Tracker simulation from the Mu2e framework, then it was developed for other studies:

- full geant4 simulation
- available detectors descriptions:
 - Cylindrical/(Transverse) Drift Chamber
 - Pixel/strip based detectors
 - Scintillating fiber ones

 modular detectors description and highly configurable with configuration files (not for specific detailed description od dedicated support structures)

- current, simplified models for reco-hits creation
- reconstruction based on genfit2 KF
- gradient Magnetic field not included

Actual status:

- It is currently maintained (as ex. it is used for some FCC studies)
- debugging is on going for:
 - □ Transverse geometry
 - track fit in the Mu2e configuration

Summary/Timeline

We are close to have the working needed tools to start more studies.

Just counting on "my working time":

- Finish to set and debug the geant4 based simulation (one week)
- Extract some preliminary resolution comparisons (before Chirstmass)
- Start to look into FastSim and see if I can help Dave (starting next week)

Help in running simulations and perform studies are welcome

Mu2e tracker options

TTracker

ITracker

ultra-light full stereo drift chamber with He based gas mixture

MU2e-II tracker workshop

8

Expected simulated performance

- A full geant4 simulation of the IDEA tracking system was developed to test the tracking performance
- The DCH is simulated at a good level of geometry details, including detailed description of the endcaps;
- SVX and Si wrapper are simulated as simple layer or overall equivalent material;
- KF with simple track selection criteria was used: only a quality cut on Chi2/nDof < 25 was applied;</p>
- A preliminary SVX and DCH description inside the FCC-sw was implemented

More details in: G. Tassielli: "Tracking performance with the updated geometry of the IDEA detector ", 11th FCC-ee workshop, CERN, January 2019"

N. A. Tehrani: "Simulation and tracking studies for a drift chamber at the FCC-ee experiment", CERN-ACC-2019-0043

FCC-ee - IDEA expected tracking performance

BARREL:

Momentum Resolution

FORWARD:

10

Variations of Kalman Filter

It can be some variations in implementation(most of them just matter of terminology for specific cases) or with extensions

SRKF – Square Root Kalman Filter:

Covariance matrix decompose in square root form

- can give numerical stability

Information Kalman Filter:

rewritten in form of inverse covariance matrix

- useful when some parameters can have infinite sigma

GSF – Gaussian-Sum Filter:

to deal with not gaussian fluctuations - instead of single Gaussian,

pdfs modeled by mixture of Gaussians (implemented as a number of Kalman Filters run in parallel)

CKF - The Combinatorial Kalman Filter

Integrate track fitting and pattern recognition

- track splitted in case of few compatible hits

DAF – Deterministic Annealing Filter

On a same surface, several hits may compete for track with different weights

- good for outliers removal

Track fitting – specific implementation aspects

How to use?

Many software packages implement KFs and are available and 'easy to use':

genFit2: https://github.com/GenFit/GenFit

(arXiv:1410.3698, NIN A620(2010)518-525) used by:

- PANDA
- □ Belle II
- ...

Track fitting - specific implementation aspects

What do we need to do?

pass measurement points with their proper description

3D (2D) point (pixel) 1D point (strip)

Fig. 2. Virtual detector plane (spanning vectors \vec{u} and \vec{v}) for a space-point hit.

Drift distance

Fig. 3. Virtual detector plane (spanning vectors \vec{u} and \vec{v}) for a wire-based drift detector

delivery a description of the material to allove the MS and ΔE evaluation
 genFit2: GDML description

