Challenges in the Building Reliable SRF Cavity Tuners for Future Higher Energy and Higher Intensity Accelerators

Yuriy Pischalnikov

FNAL 12/17/2020

Outline

Role of the SRF cavity tuner

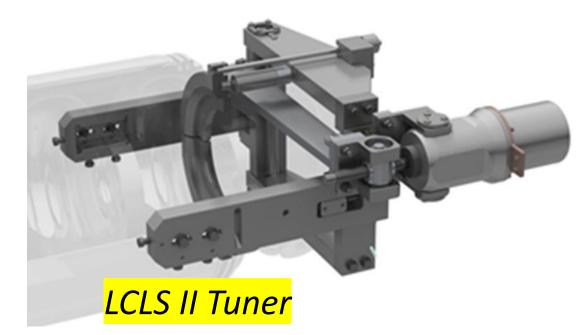
Impact of tuner failures on the overall parameters of the SRF LINAC

≻Tuner design:

✓ robust; non-expensive; maintainable

Tuner reliability/reliability of the active components
Image: Image: Sector Active Components
Image: Sector Active Com

Role of the SRF cavity tuner

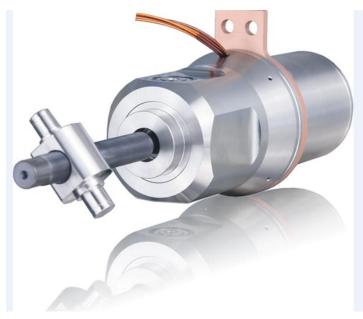

- To protect cavity during all steps of the production of the SRF cryomodules and operation
- ➤To tune cavity to operational frequency after cooldown to T=2K and return to "elastic deformation region" before warm up (slow/coarse tuner/ range is 100's kHz)

➢ To keep cavity in the resonance- compensate for microphonics and Lorentz Force Detuning (fast/fine tuner... range is 1-10 kHz)

Impact of tuner's failures on the overall parameters of the SRF LINAC

- Failure of the slow tuner:
 - Cavity could not be tune to operational frequency (SRF cavity became) expensive 1 m long beampipe)
 - Cavity tune to operational frequency and developed problems (quenching) but tuner break down and cavity could not be retuned \rightarrow problems with beam dynamics
 - Tuner failed and cavity could not be brought back before warm... likely cavity will be permanently non-elastically retuned... (cavity will be lost)
- Failure of the fast/fine tuner:
 - Microphonics and/or LFD could not be compensated \rightarrow gradient of the cavity must be decreased to operate with available RF-power
 - For narrow bandwidth cavities that have large slow tuner hysteresis failure of the fine tuner will lead to problems with brining cavity to resonance (control problems) Yu.Pischalnikov, 12/17/2020, Reliability of SRF Tuners,

Maintainability of the SRF cavity tuners

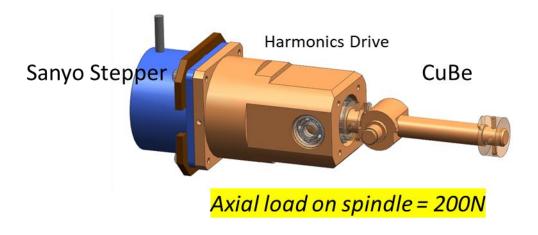

Tuner design has capability to easily replace active components (piezo & stepper actuators) through designated "tuner access port" into vacuum vessel of the cryomodule.

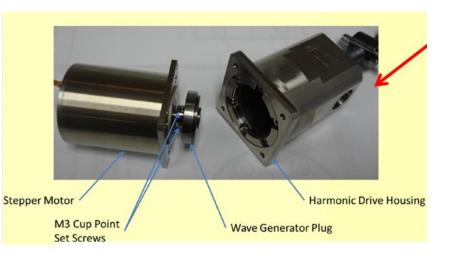
Otherwise, to fix tuner following steps need to be done:

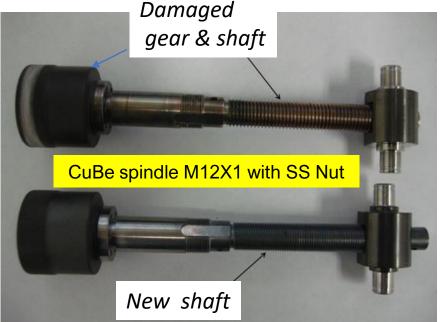
- disconnect CM from LINAC;
- remove CM outside tunnel;
- Take out cold-mass from vacuum vessel;
- Fix tuner
- Repeat all steps in opposite order...

LCLS II cryomodule Tuner as it seen from access port Yu.Pischalnikov, 12/17/2020, Reliability of SRF Tuners, miniWorkshop

Tuner Reliability Lifetime and rad. hardness of the active components *(electromechanical actuators & piezo-actuators)*




Yu.Pischalnikov, 12/17/2020, Reliability of SRF Tuners, miniWorkshop


Stepper motor actuator

One the major issue with operation/longevity of electromechanical systems at cryogenic temperature and insulated vacuum – selection of the materials/gear and lubricants

Electromechanical actuator with Harmonic Drive

Multiple failures at SNS

Pros: smaller size smaller backlash

Harmonic Drive

Yu.Pischalnikov, 12/17/2020, Reliability of SRF Tuners, miniWorkshop

TECASINT 1041 (polyimide; fillers 30% Molybdenum disulfide (MoS2) kov, 12/17/2020, Reliability of SRF Tuners,

Titanium spindle M12X1

with SS traveling nut with insert made from

rad. hard material

TECASINT 1041

Stainless

steel

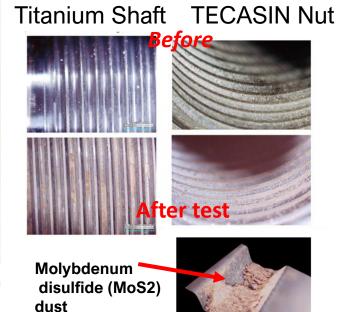
9


Electromechanical Actuator for Project X. FNAL/Phytron Collaboration It was adopted by LCLS II (and now by PIP II & LCLS II HE)

- -High Vacuum/Cryogenic Stepper motor (52mm diameter; 200steps/3600; I=1A)
- -Planetary Gear 1:50 (no Harmonics Drives)
- -Titanium shaft 12x1 (dry lubrication)
- -Traveling nut made with TECASIN insert (provide additional dry lubrications)
- Tested in cryo/vacuum environment for 10 lifetimes of the LCLS II/ILC LINACs without any failures.
- -Tested for radiation hardness up to 5*108Rads (no issues)

Planetary Gear Box 1:50

Testing actuators inside LN2 on the vendor site


Accelerated Lifetime Test

Continuously running at cryo temperature inside insulated vacuum for 14 days→ 350MHz=12liftimes of LCLS II

<mark>No failure</mark>

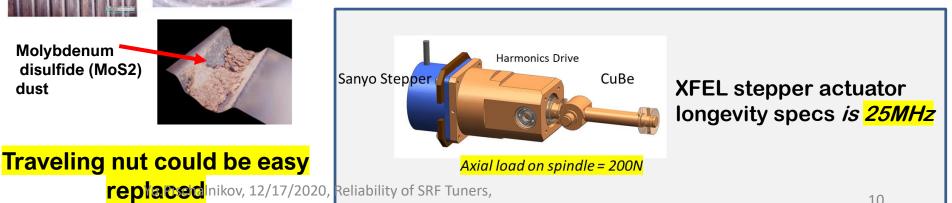


Figure 2: Tuner assembly attached to Aluminium base plate and spring stack for testing

Operation during, Years	25
Warm up cycle per year	23
Warm up cycle per life of LINAC	50
Average (slow) tuning range (300kHz * 2), MHz	0.6
Expected tuning range for the lifetime of the LINAC, MHz	30

Next test for LCLS II HE OFO specs at FNAL soon. LCLS HE OFO specs for longevity is ~ 700MHz

miniWorkshop

Piezo actuator

Active Resonance Control

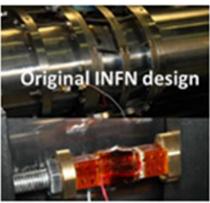
Development/implementation of the piezo control algorithms in large systems

Pulsed SRF accelarators, existing and projects	Cavity Half- bandwidth, Hz	LFD, Hz	LFD/HBW	
ESS	500	400	0.8	
XFEL	141	550	4	
PIP II	30	330	11	
ILC (50-60MV/m)	55	2500-3600	40-60	
ILC(35-40MV/m)			10-15	

Lorentz Force Detune is an issue!

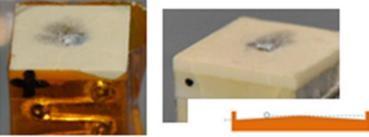
(df_{LFD}/df_{HWR}~gradient³)

When machine operate at high rep rate (10-25Hz) residual vibration from previous pulse will contribute into detuning...


Requirements to the piezo for operation in XFEL/ ILC and LCLS II Impact on the longevity of the piezo

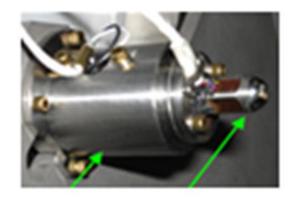
	XFEL /ILC	LCLS II	FNAL-test- stand (2month)
Operation	10/20 pulses/sec	CW	CW
stimulus pulse, Hz	200 (2 sinewave per pulse)	40	5000
Vpp, V	120	2	2
piezo stroke,[um]	5	0.2	0.2
number pulses for 20 years	7E+10	2E+10	2E+10
total stroke of piezo for 20years, [km]	60/ 500	5	5
Piezo-stack motion speed (rms) (mm/s)	4.5	0.02	2.2
Piezo-stack motion acceleration (rms)(g)	0.6	0.0004	7
Heat dissipation, [mW]	90/200	0.05	6
Piezo ∆T raised	20K/ ~100K	0.1K	2K

 $P_{av} = \pi C U^2 f * D$, where D is dissipation Factor (~5-20%)


estimated measured

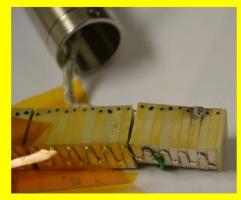
Operational voltage for ILC piezo *(when operated at RF-pulse mode)* will be 60 times higher that for LCLS II. Power dissipation inside piezo-ceramic actuator for ILC is several 1000 large than for LCLS II. <u>Overheating of PIEZO could be a serious</u> <u>problem.</u> Yu.Pischalnikov, 12/17/2020, Reliability of SRF Tuners, miniWorkshop Many project have their "bad" experiences with piezo failure. Examples of FNAL's Tuner team experience (failures of the "in-house" integration of the piezo-ceramic stack into fast tuner. Shearing Forces on the piezo-stack led to quick piezo failures.

1) Shearing Forces applied to piezostack



No any encapsulations

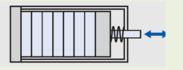




Yu.Pischalnikov, 12/17/2020, Reliability of SRF Tuners, miniWorkshop Typical Failure cracks → HV breakdown

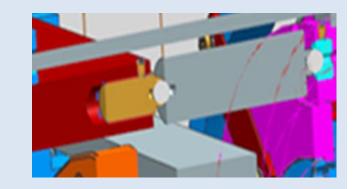
Mechanical disintegration at 2 places

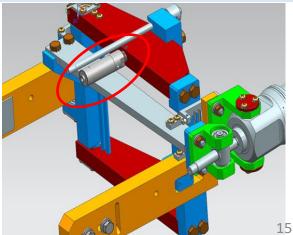
Join FERMILAB/ Physik Instrumente (PI) efforts to build piezo-actuator (for LCLS II .. and now for PIP II)



Physik Instrumente P-844K075

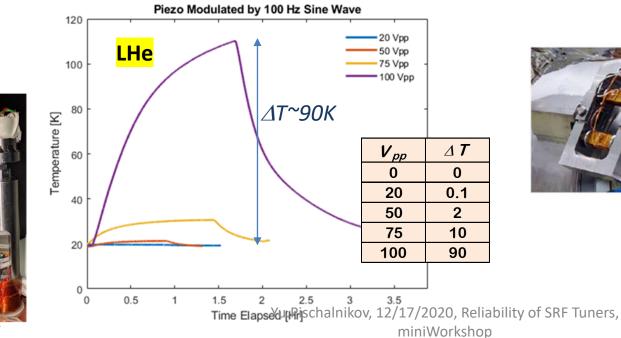
- Two glued PICMA piezo-stacks 10*10*18mm
- Capsulation with best technology
- Internal preload of piezo-stack
- Interface with ceramic balls to \succ minimize sharing forces
- Wires that withstand high radiation





Piezo-actuator reliability study (Accelerated Lifetime Test ALT)

Overheating piezo-ceramic actuators when operated at cryogenic temperature & insulated vacuum


Power dissipated inside piezo-stack

$$P = \frac{\pi}{4} \cdot f \cdot C \cdot tan(\delta) \cdot U_{p-p}^2$$

Thermal conductivity of the piezo-ceramics is low.
 Removing heat from the actuator is necessary to avoid overheating at large amplitude and high operating frequency.

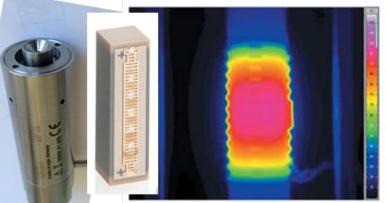
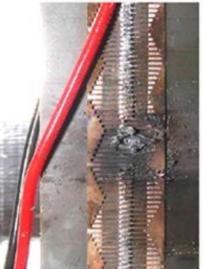
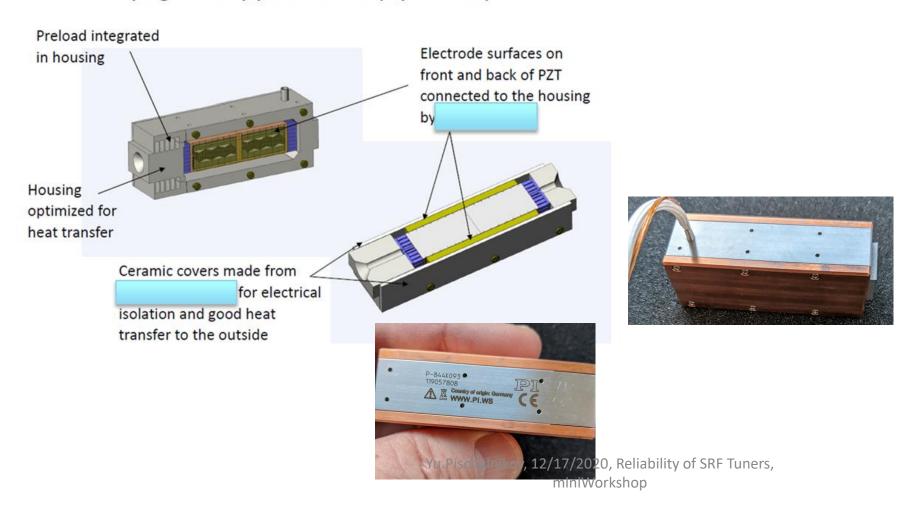
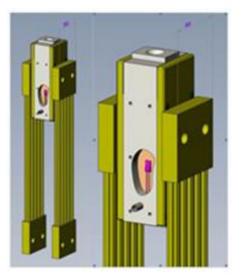



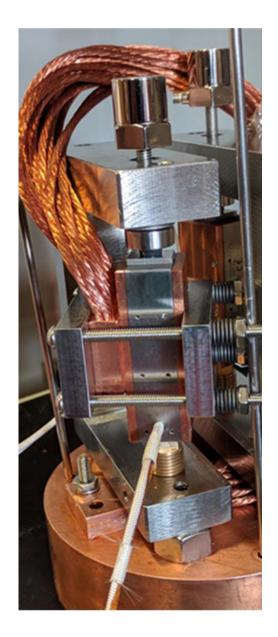
Fig. 5.1: Thermal image of a dynamically cycled high voltage actuator, clamped at its end faces. Environment: ambient air convection. Notice the cooling effect at the end-faces due to the clamping mechanics

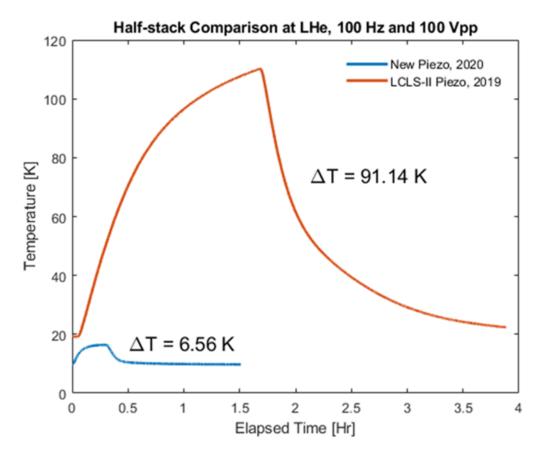

With the goal to develop newest High dynamic rate & high amplitude piezo-actuator FERMILAB engaged in R&D work with industrial partner to address following Task


- Develop technology to remove heat from the whole stack of the piezo-actuator (encapsulated & preloaded) when it is operating at cryogenics temperature (from 2K to 20K) and inside insulated vacuum.
 - piezo continuously stretching/compressing (any thermoconducting paste will be solid at this temperature)
 - Surface of the piezo under HV (any connections /heat sink to cryomodule's thermo-shield must be electrically insulated)

Design of the PI High Dynamic Rate encapsulate piezo actuator (patent pending)

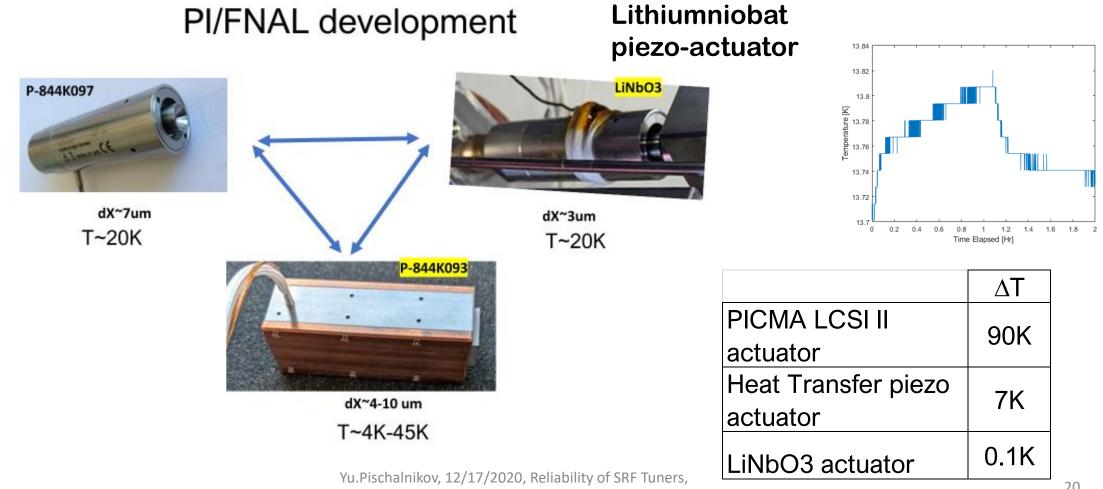
MOTION | POSITIONING


Design concept for a dynamic actuator in cryogenic applications (updated)



Physik Instrumente (PI) GmbH & Co. KG Auf der Roemerstrasse 1 76228 Karlsruhe Germany

PI


New Piezo results at LHe

The same sinewave signal 100Vpp@100Hz warmed up the new (HDR) piezo on just $\Delta T=7K$ when "standard" piezo-actuators on $\Delta T=91K$

∆T=7K vs ∆T=91K

Development of the piezo-actuators with different piezoelectric ceramics ... significantly decrease heat dissipation at high repetition rate and high amplitude

miniWorkshop

Summary

- Longevity of the active components (stepper and piezo actuators) will limit reliability of SRF cavity tuners
- Reliable actuators could be built only in strong collaboration with industrial partners that have strong record of work with space programs ("made in house" solution is usually non-reliable)
- Available stepper motor actuators (example: Phytron unit for LCLS II) demonstrated longevity that satisfy reqs for future HEP SRF LINACs. Next step is work with industrial partners to minimize cost of unit
- FNAL in collaboration with PI built reliable piezo actuators for LCLS II project (CW-mode operation).
- FNAL is working with PI to develop reliable piezo actuators for high dynamic rate operation (to compensate LFD in future SRF machine to be run in RF-pulse mode – ILC; PIP III, etc)