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Motivation

Crab cavit y fo r CERN luminosit y upgrade

Tw o bunches fo rm a angle nea r IP to p revent pa rasitic collisions.

Without a crab cavit y , it leads to geometrical luminosit y loss due to decreased

inter-sectional a rea.

A crab cavit y deects the b eams transversely to comp ensate the geometric luminosit y

loss.
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Picture from Calaga et al. LHC crab-cavit y asp ects and strategy
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Crab crossing design evolution

Crab crossing concept is �rst p rop osed b y R. P almer at 1988 fo r LC.
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K. Ohmi, Crab crossing at KEKB , Beam-b eam w o rkshop, SLA C 2007
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Crab crossing design evolution

Crab crossing concept is �rst p rop osed b y R. P almer at 1988 fo r LC.

Successfully p ro duced in F eb. 2007 at KEKB.
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K. Ohmi, Crab crossing at KEKB , Beam-b eam w o rkshop, SLA C 2007
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Crab cavit y design evolution

F o cusing on compact cavit y mo dels.
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R. Calaga, Crab Crossing F o r LHC Upgrade , SRF July 2011
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Crab cavit y design evolution

W e a re doing simulations with the ODU-JLab mo del.
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Crab cavit y sp eci�cations
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R. Calaga, Crab Crossing F o r LHC Upgrade , SRF July 2011
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Goals

T o study the p ossible negative e�ects of a crab cavit y on the tune fo otp rint,

dynamic ap erture and emittance of the b eam.
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Goals

T o study the p ossible negative e�ects of a crab cavit y on the tune fo otp rint,

dynamic ap erture and emittance of the b eam.

Interp olate the �eld at any p oint

Calculate crab cavit y kicks

Evaluate the impact b y compa ring simulation results with o r without crab

cavit y
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Calculate the pa rallel ba r crab cavit y kicks

EM �elds in a TEM resonance structure a re
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Calculate the pa rallel ba r crab cavit y kicks

Using Lo rentz's EOM d p = d t =

1

p

0

q ( E + v � B ) and v = � c ^� w e obtain

EOM of a pa rticle with longitudinal distance z from the synchronous pa rticle
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The reference pa rticle passes through the cavit y gap in time

t 2 nT
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is the cavit y gap width along the �

direction.

No available analytical fo rmula fo r crab cavit y kicks. W e have to obtain it via

numerical integration.

The actual �elds in use a re simulated based on CSD Micro w ave Studio's

numerical mo del of the cavit y .

Symmetry of �eld comp onents along z axis
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Interp olation algo rithm

Interp olation is a metho d of constructing new data p oints within the range of a

discrete set of kno wn data p oints. This algo rithm is a slight va riation of

quadratic p olynomial interp olation.

P olynomial interp olation

The idea is that any n + 1 kno wn data p oints uniquely determine a n -th

p olynomial. The value at any other p oints can b e p redicted b y the p olynomial.

Given a discrete set of p oints, w e usually pick the n + 1 nea rest p oints to the

p oint of interp olation to construct the p olynomial.

Pros:

F ast

Easy to implement

Cons:

Only has C

0

continuit y (do es not have continuous derivatives)

La rge oscillations nea r endp oints (therefo re interp olation o rder > 5 is

ra rely used)



Intro duction Algo rithm Results Conclusion

Interp olation algo rithm

V a riation of 3D quadratic interp olation

Note: This algo rithm requires unifo rm grid spacing

along each direction.

1. Cover the domain with cub es with a side length of

2 � grid spacing.

2. Pick the 20 p oints on the vertices and edges.

Disca rd p oints at the center of faces and in the center

of the cub e.
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p olynomial functions which change from site to site.



Intro duction Algo rithm Results Conclusion

Interp olation algo rithm

V a riation of 3D quadratic interp olation

- No des at the vertices:
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Interp olation algo rithm

V a riation of 3D quadratic interp olation

-No des on the xy -plane:
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Interp olation results in compa rison with Mathematica interp olation
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Simulation

BB Simulation with crab cavit y

T racking pa rticles through a mo del of SPS with all linea r fo cusing �elds and

nonlinea r �elds.

A crab cavit y will �rst b e tested at SPS.

Crab cavit y pa remeters:

energy(GeV) voltage(GV) frequency(MHz) radius(m)

26 13 � 10

� 4

400 0.433

Lo oking fo r impacts on tune fo otp rint, dynamic ap erture and emittance.
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TM mo de: tune fo otp rint

Figure: T une fo otp rint with crab cavit y on ( red ) and o� ( green ).
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TM mo de: dynamic ap erture

Dynamic ap erture sp eci�es the maximal range b elo w which pa rticles a re stable.

P a rticles outside of the dynamic ap erture will b e lost.

Figure: Dynamic ap erture under TM mo de (identical with o r without crab cavit y).
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TM mo de: emittance

Figure: Emittance along x-axis up to 10

5

turns with crab cavit y on ( red ) and o�

( green ).

Figure: Emittance along y-axis up to 10

5

turns with crab cavit y on ( red ) and o�

( green ).
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Conclusion

Interp olation

Smo oth

Matches tabulated data

Close to Mathematica quadratic interp olation.

Simulation

TM mo de (at 26 GeV):

small fo otp rint change

dynamic ap erture not a�ected

some emittance change, but b ounded in the same vicinit y

The e�ect of the crab cavities on the b eam is small seen from this simulation.

F uture w o rk

Simulation of the TEM mo de cavit y at va rious energies of SPS and LHC.
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Interp olation results in compa rison with Mathematica interp olation (cont'd)
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Interp olation results in compa rison with Mathematica interp olation (cont'd)
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