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Introdution Algorithm Results ConlusionMotivation
Crab avity for CERN luminosity upgradeTwo bunhes form a angle near IP to prevent parasiti ollisions.Without a rab avity, it leads to geometrial luminosity loss due to dereasedinter-setional area.A rab avity deets the beams transversely to ompensate the geometri luminosityloss.0Piture from Calaga et al. LHC rab-avity aspets and strategy



Introdution Algorithm Results ConlusionCrab rossing design evolutionCrab rossing onept is �rst proposed by R. Palmer at 1988 for LC.

0K. Ohmi, Crab rossing at KEKB, Beam-beam workshop, SLAC 2007



Introdution Algorithm Results ConlusionCrab rossing design evolutionCrab rossing onept is �rst proposed by R. Palmer at 1988 for LC.
Suessfully produed in Feb. 2007 at KEKB.

0K. Ohmi, Crab rossing at KEKB, Beam-beam workshop, SLAC 2007



Introdution Algorithm Results ConlusionCrab avity design evolution

Fousing on ompat avity models.0R. Calaga, Crab Crossing For LHC Upgrade, SRF July 2011
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We are doing simulations with the ODU-JLab model.
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0R. Calaga, Crab Crossing For LHC Upgrade, SRF July 2011
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To study the possible negative e�ets of a rab avity on the tune footprint,dynami aperture and emittane of the beam.



Introdution Algorithm Results ConlusionGoals
To study the possible negative e�ets of a rab avity on the tune footprint,dynami aperture and emittane of the beam.Interpolate the �eld at any pointCalulate rab avity kiksEvaluate the impat by omparing simulation results with or without rabavity



Introdution Algorithm Results ConlusionCalulate the parallel bar rab avity kiksEM �elds in a TEM resonane struture areE(x; y ; �; t) = E(x; �) os�2�y� � sin(!t);B(x; y ; �; t) = E(x; �)Z0 � ŷ sin�2�y� � os(!t)where Z0 =p�=�.Assuming two in�nite rods parallel to the y-axis with uniform harge density q, androssing the (x; �) plane at x = �a; � = 0. The potential is given byV (x; �) = q4��0 ln r2�r2+ ! ;where r2� = (x � a)2 + �2; r2+ = (x + a)2 + �2 :The eletri �elds areEx (x; �) = ��V�x = � aq��0 " x2 � a2 � �2r2�r2+ #E�(x; �) = ��V�� = � aq��0 " 2x�r2�r2+ #



Introdution Algorithm Results ConlusionCalulate the parallel bar rab avity kiksUsing Lorentz's EOM dp=dt = 1p0 q(E+ v� B) and v = ��̂ we obtainEOM of a partile with longitudinal distane z from the synhronous partiledpxdt = qp0 Ex(x ; �t + z) os(ky) sin�! �t � z���dpydt = � qp0 �Z0 E�(x ; �t + z) sin � 2�y� � os �! �t � z���dpzdt = � qp0 E�(x ; �t + z) os(ky)sin �! �t � z��� :The referene partile passes through the avity gap in timet 2 nT0 + (�L�=2�; L�=2�), where L� is the avity gap width along the �diretion.No available analytial formula for rab avity kiks. We have to obtain it vianumerial integration.The atual �elds in use are simulated based on CSD Mirowave Studio'snumerial model of the avity.Symmetry of �eld omponents along z axisEx Ey Ez Hx Hy HzS S A A A S



Introdution Algorithm Results ConlusionInterpolation algorithmInterpolation is a method of onstruting new data points within the range of adisrete set of known data points. This algorithm is a slight variation ofquadrati polynomial interpolation.Polynomial interpolationThe idea is that any n+ 1 known data points uniquely determine a n-thpolynomial. The value at any other points an be predited by the polynomial.Given a disrete set of points, we usually pik the n+ 1 nearest points to thepoint of interpolation to onstrut the polynomial.Pros:FastEasy to implementCons:Only has C 0 ontinuity (does not have ontinuous derivatives)Large osillations near endpoints (therefore interpolation order > 5 israrely used)



Introdution Algorithm Results ConlusionInterpolation algorithm
Variation of 3D quadrati interpolationNote: This algorithm requires uniform grid spaingalong eah diretion.1. Cover the domain with ubes with a side length of2� grid spaing.2. Pik the 20 points on the verties and edges.Disard points at the enter of faes and in the enterof the ube.3. f (x ; y ; z) =P20i=1 iNi (x ; y ; z ; �i ; �i ; �i)where i are found fromf (xi ; yi ; zi ) = iNi (xi ; yi ; zi ; �i ; �i ; �i) and Ni 's arepolynomial funtions whih hange from site to site.



Introdution Algorithm Results ConlusionInterpolation algorithmVariation of 3D quadrati interpolation- Nodes at the verties:Node i 1 3 5 7 13 15 17 19�i -1 1 1 -1 -1 1 1 -1�i -1 -1 1 1 -1 -1 1 1�i -1 -1 -1 -1 1 1 1 1Ni = 18(1+ �ix)(1+ �iy)(1+ �i z)(�2+ �ix + �iy + �i z)-Nodes on the yz-plane:Node i 2 6 14 18�i 0 0 0 0�i -1 1 -1 1�i -1 -1 1 1Ni = 14(1� x2)(1 + �iy)(1 + �i z)



Introdution Algorithm Results ConlusionInterpolation algorithmVariation of 3D quadrati interpolation-Nodes on the xy -plane:Node i 4 8 16 20�i 1 -1 1 -1�i 0 0 0 0�i -1 -1 1 1Ni = 14(1 + �ix)(1� y 2)(1 + �iz)-Nodes on the xz-plane:Node i 9 10 11 12�i -1 1 1 -1�i -1 -1 1 1�i 0 0 0 0Ni = 14(1 + �ix)(1 + �iy)(1� z2)



Introdution Algorithm Results ConlusionInterpolation results in omparison with Mathematia interpolation
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BB Simulation with rab avityTraking partiles through a model of SPS with all linear fousing �elds andnonlinear �elds.A rab avity will �rst be tested at SPS.Crab avity paremeters:energy(GeV) voltage(GV) frequeny(MHz) radius(m)26 13� 10�4 400 0.433Looking for impats on tune footprint, dynami aperture and emittane.



Introdution Algorithm Results ConlusionTM mode: tune footprint

Figure: Tune footprint with rab avity on (red) and o� (green).



Introdution Algorithm Results ConlusionTM mode: dynami apertureDynami aperture spei�es the maximal range below whih partiles are stable.Partiles outside of the dynami aperture will be lost.

Figure: Dynami aperture under TM mode (idential with or without rab avity).



Introdution Algorithm Results ConlusionTM mode: emittane

Figure: Emittane along x-axis up to 105turns with rab avity on (red) and o�(green). Figure: Emittane along y-axis up to 105turns with rab avity on (red) and o�(green).



Introdution Algorithm Results ConlusionConlusionInterpolationSmoothMathes tabulated dataClose to Mathematia quadrati interpolation.SimulationTM mode (at 26 GeV):small footprint hangedynami aperture not a�etedsome emittane hange, but bounded in the same viinityThe e�et of the rab avities on the beam is small seen from this simulation.Future workSimulation of the TEM mode avity at various energies of SPS and LHC.
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Introdution Algorithm Results ConlusionInterpolation results in omparison with Mathematia interpolation (ont'd)
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