

Scan status and plans

Jennet Dickinson Snowmass EF08 pMSSM scan December 9, 2020

Initial pMSSM scan strategy

- Scan parameter space with Markov chain Monte Carlo
 - Have some code publicly available (thanks to Malte!)
 - Want to try running it? Check out the twiki page
- Perform a few (2?) McMC scans targeting *different physics* scenarios
 - Allows for consistent comparisons across experiments: compare the sensitivity within a single scan
- Timeline goal: submit one scan before the holidays so it can run during the break
 - Start event generation in the new year

Example scans: pros and cons

- Grand scan that covers as much parameter space as possible
 - ^e All regions over parameter space are covered
 - 😕 Risk of poor granularity in some interesting regions
- *Targeted scan* (or scans) focusing e.g. on EWK SUSY
 - May miss regions of parameter space interesting for other physics scenarios
 - 🥲 Guarantees good granularity in the target region

Example scan ranges

Parameter	CMS Run 1	ATLAS Run 1	ATLAS EWK Run 2	ATLAS 3G Run 2	CMS Run 2	Snowmass EWK ??	Snowmass Grand ??
tan β	[2, 60]	[1, 60]	[1, 60]	[1, 60]	[2, 60]	[1, 60]	[1, 60]
Ma	[0, 3]	[0.1, 4]	[0, 5]	[0, 5]	[0, 4]	[0, 5]	[0, 5]
lμl	[0, 3]	[0.08, 4]	[0, 2]	[0, 2]	[0, 4]	[0, 2]	[0, 25] ?
IM ₁ I	[0, 3]	[0, 4]	[0, 2]	[0, 2]	[0, 4]	[0, 2]	[0, 25] ?
IM ₂ I	[0, 3]	[0.07, 4]	[0, 2]	[0, 2]	[0, 4]	[0, 2]	[0, 25] ?
Мз	[0, 3]	[0.2, 3]	[1, 5]	[0, 5]	[0, 10]	[1, 5]	[0, 50]
ML12~, Me12~, ML3~, Me3~	[0, 3]	[0.09, 4]	10 TeV	[0, 2]	[0, 4]	100 TeV ?	
MQ12~, Mu12~, Md12~	[0, 3]	[0.2, 4]	10 TeV	[0, 5]	[0, 10]	100 TeV ?	
MQ3∼, Mu3∼, Md3∼	[0, 3]	[0.1, 4]	[2, 5]	[0, 5]	[0, 10]	[2, 5]	
IAtl	[0, 7]	[0, 8]	[1, 5]	[0, 8]	[0, 7]		
IAbI, IAτI	[0, 7]	[0, 4]	[0, 2]	[0, 2]	[0, 7]		

‡ Fermilab

Remaining open question:

- What is the best way to incorporate existing experimental results into the scan?
 - Directly into the likelihood
 - Steers the scan away from experimentally excluded regions
 - Could introduce bias if measurement values change later...
 - By over-sampling in regions of interest
 - Good for parameters where multiple regions are interesting (e.g. a_{μ} at best measured and SM values)
- Would be good to use consistent assumptions across scans
- Let's discuss today

Today's agenda

Some thoughts from the theory side on how to use existing measurements and calculate observables

Speaker: Jonas Wittbrodt (Lund University)

