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The Challenge - Extract the incoming ν flux

N(Erec, L) /
Z

�(E,L)�(E)f�(E,Erec)dE�(E,L)

Incoming true fluxMeasurement Incoming true flux Modelling inputModelling input

N(Erec, L) /
Z

�(E,L)�(E)f�(E,Erec)dE�(E)f�(E,Erec)N(Erec, L) /
Z

�(E,L)�(E)f�(E,Erec)dE

2

Fig. 1: Neutrino oscillations and energy spectra measurements | (Left) Neutrino energy spectra
reconstruction depends on our ability to model the interaction of neutrinos with atomic nuclei and the propagation
of particles through the atomic nucleus. This flow chart shows the process, starting with the oscillated far-detector

⌫e incident-energy spectrum (green), di↵erentiating the physical neutrino interactions (green arrows) from the
experimental analysis (blue arrows), and ending up with the inferred incident-energy spectrum (blue). The blue

curve is obtained from simulating the neutrino-nucleus interactions with the CLAS data-derived smearing matrices
and reconstructing the flux using the model-derived smearing matrices instead. The input incident-energy spectrum

is shown for reference as the thin green.

f�i(E,Erec) is a smearing matrix relating the real (E)
and reconstructed (Erec) neutrino energies. Erec di↵ers
from E due to both experimental e↵ects (e.g. detector
resolutions, ine�ciencies, backgrounds) and nuclear in-
teraction e↵ects (e.g. nucleon motion, meson currents,
nucleon reinteraction). While experimental e↵ects are
generally understood and can be minimized using im-
proved detectors, nuclear e↵ects are irreducible and must
be accounted for using theoretical models, typically im-
plemented in neutrino event generators.

The precision to which oscillation parameters can be
determined experimentally therefore depends on our abil-
ity to extract �↵(E,L) fromN↵(Erec, L), see Fig. 1. This
is largely determined by the accuracy of the theoretical
models used to calculate �i(E) and f�i(E,Erec). Cur-
rent oscillation experiments report significant systematic
uncertainties due to these interaction models [7–10] and
simulations show that energy reconstruction errors can
lead to significant biases in extracting �CP at DUNE [11].
There is a robust theoretical e↵ort to improve these mod-
els [12–14].

Because there are no mono-energetic high-energy neu-
trino beams, these models cannot be tested for individual
neutrino energies. Instead, experiments tune models of

�i(E) and f�i(E,Erec) to reproduce their near-detector
data, where the unoscillated flux �(E, 0) is relatively well
known from hadronic calculations [15–17].

While highly informative, such integrated constraints
are insu�cient to ensure that the models are correct for
each value of E. Therefore, even if the models are tuned
to reproduce the near-detector data, there is no guaran-
tee that they are suitable for analyzing far-detector data,
where the neutrino flux can be very di↵erent due to os-
cillations.

Here we report the first measurement of f�i(E,Erec)
for mono-energetic electron-nucleus scattering, and use
it to test interaction models used by neutrino oscilla-
tion analyses. Both types of leptons, e and ⌫, interact
similarly with nuclei. Both particles interact with nu-
clei via a vector current, while neutrinos have an addi-
tional axial-vector current. The nuclear ground state is
the same in both cases and many of the nuclear reac-
tion e↵ects are similar. See Methods for details. There-
fore, any model of neutrino interactions (vector+axial-
vector) should also be able to reproduce electron (vec-
tor) interactions. The data presented here can therefore
test and constrain neutrino-nucleus interaction models
to be used in analysis of neutrino oscillation measure-
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The Challenge - Modelling dependency 
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How to improve modelling?

Improve theory

Modelling inputModelling input
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How to improve modelling?

Improve theory

Use near detector 

Modelling inputModelling input
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Use external constraints

How to improve modelling?

Improve theory

Use near detector 

Modelling inputModelling input

N(Erec, L) /
Z

�(E,L)�(E)f�(E,Erec)dE�(E)f�(E,Erec)

e scattering 
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Why Electrons?
- Electrons and Neutrinos have:

- Similar interactions 

- Vector vs. Vector + Axial Vector

- Many identical nuclear effects 

- Ground state (spectral function)

- Final state interactions

Electron beams have known energy

e

e
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Objectives 

Leverage wide phase space exclusive electron scattering data for 
the benefit of neutrino experiments

- Benchmark neutrino event generators

- Constrain modelling systematic uncertainties

- By analysing as many channel as possible 

- Testing incoming energy and A dependencies

- Showing implication on neutrino physics

- Improve modelling and offer dedicated tunes 
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Event Generator 

1H(e,e’p)  E = 4.325 GeV  
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Fig. Extended Data Fig. 2: 0.961 GeV inclusive electron scattering cross section at 37.5� plotted versus ! for
data (points), e-GENIE (black line), and di↵erent reaction mechanism components of e-GENIE (quasi-elastic (QE),
meson exchange currents (MEC), resonance production (RES), and deep inelastic scattering (DIS)) for (left) C(e, e0)

and (middle) Fe(e, e0). (right) The same for 2.22 GeV Ar(e, e0) data at 15.54� [40].
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Fig. Extended Data Fig. 4: Comparison of generated (e, e0p)1p0⇡ event distributions for e-GENIE (black) and
⌫-GENIE (red) for 2.257 GeV leptons incident on 56Fe for Q2 � 0.2 GeV2. The plots show the number of events as
a function of (a) Q2, (b) energy transfer, and (c) P?

miss. The e-GENIE events are weighted by 1/�Mott and the plots
have been area normalized.

              widely in use by the US neutrino community 
Latest version v3.0.6 tune G18_10a_02_11a 
Nicely reproducing inclusive results

arXiv:2009.07228 [nucl-th] Phys. Rev. Lett. 123, 131801 (2019)  
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           Event Generator 
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1H(e,e’p)  E = 4.325 GeV  

Adding radiative effects 
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Possible electron facilities

Mainz MAMI 
accelerator testing 
their sensitivity
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CLAS Detector

Large acceptance,  Open Trigger

Charged particle detection thresholds:

θe > 15o

Pp > 300 MeV/c 
Pπ+/- > 150 MeV/c
Pπ0 > 500 MeV/c

Targets:   4He, 12C, 56Fe 
Energies: 1.1 , 2.2, 4.4 GeV 



            1p0π Event Selection

13

Focus on Quasi Elastic events:
  1 proton above 300 MeV/c  
  no additional hadrons above threshold:
       Pπ+/- > 150 MeV/c

       Pπ0 > 500 MeV/c    

e

e
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           : Playing the Neutrino game 

Analyse electron data as neutrino data

- Select lepton + proton final state (1p0π)

- Scale by 

- Reconstruct incoming lepton energy 

- Benchmark neutrino event generators

�⌫N/�eN / 1/Q4

e

e



Subtract for events w/ undetected hadrons 
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Subtract for events w/ undetected hadrons 
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12	

 

Rotate π  around q
!

 to 
determine detection 
acceptance

(e,e’p)


Subtracting undetected 2 proton 
events to get 1proton sample the 

similar way  


Subtracting undetected pions to get 0 pion sample 
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Using two hadron events:

Rotating the two hadrons around q, to determine detection efficiency

Same for final states with more than 2 hadrons

Subtracting  QE like background



Incoming Energy Reconstruction 
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Cherenkov detectors:
Assuming QE interaction
Using lepton only

Tracking detectors:
Calorimetric sum 
Using All detected particles

✏ is the nucleon separation energy ~ 20 MeV

Ecal = El + Ekin
p + ✏EQE =

2M✏+ 2MEl �m2
l

2(M � El + |kl| cos ✓l)
[1p0π]
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Disagreements between Data and MC
E = 1.159 GeV
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Disagreements between Data and MC
1.159 GeV 2.257 GeV 4.453 GeV

12C

56Fe



Multiplicities 
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12CE = 2.257 GeV

v3.0.6 



MC vs. (e,e’p) Data: 

21

PT = P e0

T + P p
T

v3.0.6 



MC vs. (e,e’p) Data: 
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PT = P e0

T + P p
T

PT

PT

PT

v3.0.6 



MINERvA
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Future Plans -Approved run for

Acceptance down to 5o     Q2 > 0.04 GeV2

x10 luminosity  [1035 cm-2s-1]

Keep low thresholds

Targets: 2D, 4He, 12C, 16O, 40Ar, 120Sn 

1 - 7 GeV (relevant for DUNE)

Running planned for 2021

Overwhelming support from: 



         The team

Mariana Khachatryan
ODU @ JLab

Afroditi Papadopoulou
MIT @ FNAL
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         The team
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Summary
- Testing νA Models with wide phase-space eA 

data. 

- Data-MC disagreements for QE-like events 

- Especially for high transverse momentum. 

- Large potential impact on DUNE 

- More data coming very soon  

- Looking forward to keep improving models, 

offering tunes and and to collaborate with all 

electron scattering project. (see Snowmass NF06 

meeting next week)

https://indico.fnal.gov/event/46620/


Thank you for your attention

27
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Fig. 1: Neutrino oscillations and energy spectra measurements | (Left) Neutrino energy spectra
reconstruction depends on our ability to model the interaction of neutrinos with atomic nuclei and the propagation
of particles through the atomic nucleus. This flow chart shows the process, starting with the oscillated far-detector

⌫e incident-energy spectrum (green), di↵erentiating the physical neutrino interactions (green arrows) from the
experimental analysis (blue arrows), and ending up with the inferred incident-energy spectrum (blue). The blue

curve is obtained from simulating the neutrino-nucleus interactions with the CLAS data-derived smearing matrices
and reconstructing the flux using the model-derived smearing matrices instead. The input incident-energy spectrum

is shown for reference as the thin green.

f�i(E,Erec) is a smearing matrix relating the real (E)
and reconstructed (Erec) neutrino energies. Erec di↵ers
from E due to both experimental e↵ects (e.g. detector
resolutions, ine�ciencies, backgrounds) and nuclear in-
teraction e↵ects (e.g. nucleon motion, meson currents,
nucleon reinteraction). While experimental e↵ects are
generally understood and can be minimized using im-
proved detectors, nuclear e↵ects are irreducible and must
be accounted for using theoretical models, typically im-
plemented in neutrino event generators.

The precision to which oscillation parameters can be
determined experimentally therefore depends on our abil-
ity to extract �↵(E,L) fromN↵(Erec, L), see Fig. 1. This
is largely determined by the accuracy of the theoretical
models used to calculate �i(E) and f�i(E,Erec). Cur-
rent oscillation experiments report significant systematic
uncertainties due to these interaction models [7–10] and
simulations show that energy reconstruction errors can
lead to significant biases in extracting �CP at DUNE [11].
There is a robust theoretical e↵ort to improve these mod-
els [12–14].

Because there are no mono-energetic high-energy neu-
trino beams, these models cannot be tested for individual
neutrino energies. Instead, experiments tune models of

�i(E) and f�i(E,Erec) to reproduce their near-detector
data, where the unoscillated flux �(E, 0) is relatively well
known from hadronic calculations [15–17].

While highly informative, such integrated constraints
are insu�cient to ensure that the models are correct for
each value of E. Therefore, even if the models are tuned
to reproduce the near-detector data, there is no guaran-
tee that they are suitable for analyzing far-detector data,
where the neutrino flux can be very di↵erent due to os-
cillations.

Here we report the first measurement of f�i(E,Erec)
for mono-energetic electron-nucleus scattering, and use
it to test interaction models used by neutrino oscilla-
tion analyses. Both types of leptons, e and ⌫, interact
similarly with nuclei. Both particles interact with nu-
clei via a vector current, while neutrinos have an addi-
tional axial-vector current. The nuclear ground state is
the same in both cases and many of the nuclear reac-
tion e↵ects are similar. See Methods for details. There-
fore, any model of neutrino interactions (vector+axial-
vector) should also be able to reproduce electron (vec-
tor) interactions. The data presented here can therefore
test and constrain neutrino-nucleus interaction models
to be used in analysis of neutrino oscillation measure-
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Fig. 1: Neutrino oscillations and energy spectra measurements | (Left) Neutrino energy spectra
reconstruction depends on our ability to model the interaction of neutrinos with atomic nuclei and the propagation
of particles through the atomic nucleus. This flow chart shows the process, starting with the oscillated far-detector

⌫e incident-energy spectrum (green), di↵erentiating the physical neutrino interactions (green arrows) from the
experimental analysis (blue arrows), and ending up with the inferred incident-energy spectrum (blue). The blue

curve is obtained from simulating the neutrino-nucleus interactions with the CLAS data-derived smearing matrices
and reconstructing the flux using the model-derived smearing matrices instead. The input incident-energy spectrum

is shown for reference as the thin green.

f�i(E,Erec) is a smearing matrix relating the real (E)
and reconstructed (Erec) neutrino energies. Erec di↵ers
from E due to both experimental e↵ects (e.g. detector
resolutions, ine�ciencies, backgrounds) and nuclear in-
teraction e↵ects (e.g. nucleon motion, meson currents,
nucleon reinteraction). While experimental e↵ects are
generally understood and can be minimized using im-
proved detectors, nuclear e↵ects are irreducible and must
be accounted for using theoretical models, typically im-
plemented in neutrino event generators.

The precision to which oscillation parameters can be
determined experimentally therefore depends on our abil-
ity to extract �↵(E,L) fromN↵(Erec, L), see Fig. 1. This
is largely determined by the accuracy of the theoretical
models used to calculate �i(E) and f�i(E,Erec). Cur-
rent oscillation experiments report significant systematic
uncertainties due to these interaction models [7–10] and
simulations show that energy reconstruction errors can
lead to significant biases in extracting �CP at DUNE [11].
There is a robust theoretical e↵ort to improve these mod-
els [12–14].

Because there are no mono-energetic high-energy neu-
trino beams, these models cannot be tested for individual
neutrino energies. Instead, experiments tune models of

�i(E) and f�i(E,Erec) to reproduce their near-detector
data, where the unoscillated flux �(E, 0) is relatively well
known from hadronic calculations [15–17].

While highly informative, such integrated constraints
are insu�cient to ensure that the models are correct for
each value of E. Therefore, even if the models are tuned
to reproduce the near-detector data, there is no guaran-
tee that they are suitable for analyzing far-detector data,
where the neutrino flux can be very di↵erent due to os-
cillations.

Here we report the first measurement of f�i(E,Erec)
for mono-energetic electron-nucleus scattering, and use
it to test interaction models used by neutrino oscilla-
tion analyses. Both types of leptons, e and ⌫, interact
similarly with nuclei. Both particles interact with nu-
clei via a vector current, while neutrinos have an addi-
tional axial-vector current. The nuclear ground state is
the same in both cases and many of the nuclear reac-
tion e↵ects are similar. See Methods for details. There-
fore, any model of neutrino interactions (vector+axial-
vector) should also be able to reproduce electron (vec-
tor) interactions. The data presented here can therefore
test and constrain neutrino-nucleus interaction models
to be used in analysis of neutrino oscillation measure-
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Fig. 1: Neutrino oscillations and energy spectra measurements | (Left) Neutrino energy spectra
reconstruction depends on our ability to model the interaction of neutrinos with atomic nuclei and the propagation
of particles through the atomic nucleus. This flow chart shows the process, starting with the oscillated far-detector

⌫e incident-energy spectrum (green), di↵erentiating the physical neutrino interactions (green arrows) from the
experimental analysis (blue arrows), and ending up with the inferred incident-energy spectrum (blue). The blue

curve is obtained from simulating the neutrino-nucleus interactions with the CLAS data-derived smearing matrices
and reconstructing the flux using the model-derived smearing matrices instead. The input incident-energy spectrum

is shown for reference as the thin green.

f�i(E,Erec) is a smearing matrix relating the real (E)
and reconstructed (Erec) neutrino energies. Erec di↵ers
from E due to both experimental e↵ects (e.g. detector
resolutions, ine�ciencies, backgrounds) and nuclear in-
teraction e↵ects (e.g. nucleon motion, meson currents,
nucleon reinteraction). While experimental e↵ects are
generally understood and can be minimized using im-
proved detectors, nuclear e↵ects are irreducible and must
be accounted for using theoretical models, typically im-
plemented in neutrino event generators.

The precision to which oscillation parameters can be
determined experimentally therefore depends on our abil-
ity to extract �↵(E,L) fromN↵(Erec, L), see Fig. 1. This
is largely determined by the accuracy of the theoretical
models used to calculate �i(E) and f�i(E,Erec). Cur-
rent oscillation experiments report significant systematic
uncertainties due to these interaction models [7–10] and
simulations show that energy reconstruction errors can
lead to significant biases in extracting �CP at DUNE [11].
There is a robust theoretical e↵ort to improve these mod-
els [12–14].

Because there are no mono-energetic high-energy neu-
trino beams, these models cannot be tested for individual
neutrino energies. Instead, experiments tune models of

�i(E) and f�i(E,Erec) to reproduce their near-detector
data, where the unoscillated flux �(E, 0) is relatively well
known from hadronic calculations [15–17].

While highly informative, such integrated constraints
are insu�cient to ensure that the models are correct for
each value of E. Therefore, even if the models are tuned
to reproduce the near-detector data, there is no guaran-
tee that they are suitable for analyzing far-detector data,
where the neutrino flux can be very di↵erent due to os-
cillations.

Here we report the first measurement of f�i(E,Erec)
for mono-energetic electron-nucleus scattering, and use
it to test interaction models used by neutrino oscilla-
tion analyses. Both types of leptons, e and ⌫, interact
similarly with nuclei. Both particles interact with nu-
clei via a vector current, while neutrinos have an addi-
tional axial-vector current. The nuclear ground state is
the same in both cases and many of the nuclear reac-
tion e↵ects are similar. See Methods for details. There-
fore, any model of neutrino interactions (vector+axial-
vector) should also be able to reproduce electron (vec-
tor) interactions. The data presented here can therefore
test and constrain neutrino-nucleus interaction models
to be used in analysis of neutrino oscillation measure-
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Fig. 1: Neutrino oscillations and energy spectra measurements | (Left) Neutrino energy spectra
reconstruction depends on our ability to model the interaction of neutrinos with atomic nuclei and the propagation
of particles through the atomic nucleus. This flow chart shows the process, starting with the oscillated far-detector

⌫e incident-energy spectrum (green), di↵erentiating the physical neutrino interactions (green arrows) from the
experimental analysis (blue arrows), and ending up with the inferred incident-energy spectrum (blue). The blue

curve is obtained from simulating the neutrino-nucleus interactions with the CLAS data-derived smearing matrices
and reconstructing the flux using the model-derived smearing matrices instead. The input incident-energy spectrum

is shown for reference as the thin green.

f�i(E,Erec) is a smearing matrix relating the real (E)
and reconstructed (Erec) neutrino energies. Erec di↵ers
from E due to both experimental e↵ects (e.g. detector
resolutions, ine�ciencies, backgrounds) and nuclear in-
teraction e↵ects (e.g. nucleon motion, meson currents,
nucleon reinteraction). While experimental e↵ects are
generally understood and can be minimized using im-
proved detectors, nuclear e↵ects are irreducible and must
be accounted for using theoretical models, typically im-
plemented in neutrino event generators.

The precision to which oscillation parameters can be
determined experimentally therefore depends on our abil-
ity to extract �↵(E,L) fromN↵(Erec, L), see Fig. 1. This
is largely determined by the accuracy of the theoretical
models used to calculate �i(E) and f�i(E,Erec). Cur-
rent oscillation experiments report significant systematic
uncertainties due to these interaction models [7–10] and
simulations show that energy reconstruction errors can
lead to significant biases in extracting �CP at DUNE [11].
There is a robust theoretical e↵ort to improve these mod-
els [12–14].

Because there are no mono-energetic high-energy neu-
trino beams, these models cannot be tested for individual
neutrino energies. Instead, experiments tune models of

�i(E) and f�i(E,Erec) to reproduce their near-detector
data, where the unoscillated flux �(E, 0) is relatively well
known from hadronic calculations [15–17].

While highly informative, such integrated constraints
are insu�cient to ensure that the models are correct for
each value of E. Therefore, even if the models are tuned
to reproduce the near-detector data, there is no guaran-
tee that they are suitable for analyzing far-detector data,
where the neutrino flux can be very di↵erent due to os-
cillations.

Here we report the first measurement of f�i(E,Erec)
for mono-energetic electron-nucleus scattering, and use
it to test interaction models used by neutrino oscilla-
tion analyses. Both types of leptons, e and ⌫, interact
similarly with nuclei. Both particles interact with nu-
clei via a vector current, while neutrinos have an addi-
tional axial-vector current. The nuclear ground state is
the same in both cases and many of the nuclear reac-
tion e↵ects are similar. See Methods for details. There-
fore, any model of neutrino interactions (vector+axial-
vector) should also be able to reproduce electron (vec-
tor) interactions. The data presented here can therefore
test and constrain neutrino-nucleus interaction models
to be used in analysis of neutrino oscillation measure-
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Estimate systematic uncertainties 
by comparing independent 
measurement in each sector. 
Use Hydrogen elastic scattering 
for absolute rate measurement.
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CLAS6: 15o  < θe < 45o 
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GENIE               v3.0.6   tune   G18_10a_02_11a

GENIE Simulation

electrons neutrinos

Nuclear model Local fermi gas model

QE Rosenbluth CS Nieves model

MEC Empirical model Nieves model

Resonances Berger Sehgal

DIS AGKY

FSI  hA2018

Others Adding radiative correction
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GENIE               v3.0.6   SuSA

GENIE Simulation

electrons neutrinos

Nuclear model Local fermi gas model

QE Rosenbluth CS Nieves model

MEC SuSAv2 SuSAv2

Resonances Berger Sehgal

DIS AGKY

FSI  hA2018

Others Adding radiative correction
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- νe appearance channel (all inclusive)
- Using existing parameter constraints 

from reactors + others experiments 
- Smearing energy based on events 

with:
   1e1p selection 
   θe > 15o

   Pp > 300 MeV/c 
   No Pπ+/- > 150 MeV/c
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Fig. 1: Neutrino oscillations and energy spectra measurements | (Left) Neutrino energy spectra
reconstruction depends on our ability to model the interaction of neutrinos with atomic nuclei and the propagation
of particles through the atomic nucleus. This flow chart shows the process, starting with the oscillated far-detector

⌫e incident-energy spectrum (green), di↵erentiating the physical neutrino interactions (green arrows) from the
experimental analysis (blue arrows), and ending up with the inferred incident-energy spectrum (blue). The blue

curve is obtained from simulating the neutrino-nucleus interactions with the CLAS data-derived smearing matrices
and reconstructing the flux using the model-derived smearing matrices instead. The input incident-energy spectrum

is shown for reference as the thin green.

f�i(E,Erec) is a smearing matrix relating the real (E)
and reconstructed (Erec) neutrino energies. Erec di↵ers
from E due to both experimental e↵ects (e.g. detector
resolutions, ine�ciencies, backgrounds) and nuclear in-
teraction e↵ects (e.g. nucleon motion, meson currents,
nucleon reinteraction). While experimental e↵ects are
generally understood and can be minimized using im-
proved detectors, nuclear e↵ects are irreducible and must
be accounted for using theoretical models, typically im-
plemented in neutrino event generators.

The precision to which oscillation parameters can be
determined experimentally therefore depends on our abil-
ity to extract �↵(E,L) fromN↵(Erec, L), see Fig. 1. This
is largely determined by the accuracy of the theoretical
models used to calculate �i(E) and f�i(E,Erec). Cur-
rent oscillation experiments report significant systematic
uncertainties due to these interaction models [7–10] and
simulations show that energy reconstruction errors can
lead to significant biases in extracting �CP at DUNE [11].
There is a robust theoretical e↵ort to improve these mod-
els [12–14].

Because there are no mono-energetic high-energy neu-
trino beams, these models cannot be tested for individual
neutrino energies. Instead, experiments tune models of

�i(E) and f�i(E,Erec) to reproduce their near-detector
data, where the unoscillated flux �(E, 0) is relatively well
known from hadronic calculations [15–17].

While highly informative, such integrated constraints
are insu�cient to ensure that the models are correct for
each value of E. Therefore, even if the models are tuned
to reproduce the near-detector data, there is no guaran-
tee that they are suitable for analyzing far-detector data,
where the neutrino flux can be very di↵erent due to os-
cillations.

Here we report the first measurement of f�i(E,Erec)
for mono-energetic electron-nucleus scattering, and use
it to test interaction models used by neutrino oscilla-
tion analyses. Both types of leptons, e and ⌫, interact
similarly with nuclei. Both particles interact with nu-
clei via a vector current, while neutrinos have an addi-
tional axial-vector current. The nuclear ground state is
the same in both cases and many of the nuclear reac-
tion e↵ects are similar. See Methods for details. There-
fore, any model of neutrino interactions (vector+axial-
vector) should also be able to reproduce electron (vec-
tor) interactions. The data presented here can therefore
test and constrain neutrino-nucleus interaction models
to be used in analysis of neutrino oscillation measure-

Reconstructed based on simulation
Reconstructed based on smearing in 
electron scattering data


