# Electrons for neutrinos

Adi Ashkenazi adishka@mit.edu

12/10/2020 NuSTEC Board Meeting



#### **The Challenge - Extract the incoming v flux**



Measurement

Incoming true flux Modelling input

#### **The Challenge - Modelling dependency**



Measurement

Incoming true flux Modelling input

#### How to improve modelling?

#### Improve theory



#### How to improve modelling?

#### Improve theory



Use near detector

#### How to improve modelling?



### **Why Electrons?**

- Electrons and Neutrinos have:
  - Similar interactions
    - Vector vs. Vector + Axial Vector
  - Many identical nuclear effects
    - Ground state (spectral function)
    - Final state interactions

Electron beams have known energy



## **Objectives**

Leverage wide phase space exclusive electron scattering data for the benefit of neutrino experiments

- Benchmark neutrino event generators
- Constrain modelling systematic uncertainties
- By analysing as many channel as possible
- Testing incoming energy and A dependencies
- Showing implication on neutrino physics
- Improve modelling and offer dedicated tunes

#### **Event Generator**

*Genie* widely in use by the US neutrino community Latest version v3.0.6 tune G18\_10a\_02\_11a Nicely reproducing inclusive results





#### Adding radiative effects



v3.0.6 tune G18\_10a\_02\_11a [Mo and Tsai]

#### **Possible electron facilities**





Mainz MAMI accelerator testing their sensitivity



 $\bigcirc$ 

Lepton-Nucleus σ Measurements with LDMX



SLAC

#### General LOI 147

LOI 91

#### LOI 102

#### **CLAS Detector**

Large acceptance, Open Trigger

Charged particle detection thresholds:

 $\theta_e > 15^\circ$   $P_p > 300 \text{ MeV/c}$   $P_{\pi+/-} > 150 \text{ MeV/c}$  $P_{\pi0} > 500 \text{ MeV/c}$ 

Targets: <sup>4</sup>He, <sup>12</sup>C, <sup>56</sup>Fe Energies: 1.1, 2.2, 4.4 GeV



# $\overrightarrow{\mathcal{C4V}}$ 1p0 $\pi$ Event Selection

Focus on Quasi Elastic events:

1 proton above 300 MeV/c

no additional hadrons above threshold:

 $P_{\pi^{+/-}} > 150 \text{ MeV/c}$ 

 $P_{\pi^0} > 500 \text{ MeV/c}$ 



# *E4V***:** Playing the Neutrino game

Analyse electron data as neutrino data

- Select lepton + proton final state  $(1p0\pi)$
- Scale by  $\sigma_{\nu N}/\sigma_{eN} \propto 1/Q^4$
- Reconstruct incoming lepton energy
- Benchmark neutrino event generators



#### Subtract for events w/ undetected hadrons





#### Subtract for events w/ undetected hadrons



Using two hadron events:

Rotating the two hadrons around q, to determine detection efficiency

Same for final states with more than 2 hadrons

Subtracting QE like background

### **Incoming Energy Reconstruction**



Cherenkov detectors:

Assuming QE interaction

Using lepton only

$$E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos\theta_l)}$$



Tracking detectors: Calorimetric sum Using All detected particles

$$E_{\text{cal}} = E_l + E_p^{\text{kin}} + \epsilon$$
[1p0 $\pi$ ]

 $\epsilon$  is the nucleon separation energy ~ 20 MeV

#### **Disagreements between Data and MC**





#### **Multiplicities**

E = 2.257 GeV <sup>12</sup>C





e'

 $P_T$ 

MC vs. (e,e'p) Data:  $\vec{P_T} = \vec{P_T}' + \vec{P_T}$ 



### **Future Plans - Approved run for @LAS12**

Acceptance down to  $5^{\circ}$  Q<sup>2</sup> > 0.04 GeV<sup>2</sup>

x10 luminosity [10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>]

Keep low thresholds

Targets: <sup>2</sup>D, <sup>4</sup>He, <sup>12</sup>C, <sup>16</sup>O, <u>40Ar</u>, <sup>120</sup>Sn

1 - 7 GeV (relevant for DUNE)

Running planned for 2021



Overwhelming support from:



















### **Summary**



- Testing vA Models with wide phase-space eA data.
- Data-MC disagreements for QE-like events
  - Especially for high transverse momentum.
  - Large potential impact on DUNE
- More data coming very soon
- Looking forward to keep improving models,
   offering tunes and and to collaborate with all
   electron scattering project. (see Snowmass NF06
   <u>meeting next week</u>)



## Thank you for your attention





#### **EXPERIMENTAL ANALYSIS**



#### **Miss-modelling might impact mixing parameters**



### **Systematic Uncertainties**

 $\phi_{q\pi}$  independence of the pion-production cross section for background subtraction

#### Varying CLAS $\pi$ acceptance



Varying the photon identification cuts

Estimate systematic uncertainties by comparing independent measurement in each sector.

Use Hydrogen elastic scattering for absolute rate measurement.

#### Where did the MEC go?



#### **GENIE Simulation**

*yenie* v3.0.6 tune G18\_10a\_02\_11a

|               | electrons                   | neutrinos    |
|---------------|-----------------------------|--------------|
| Nuclear model | Local fermi gas model       |              |
| QE            | Rosenbluth CS               | Nieves model |
| MEC           | Empirical model             | Nieves model |
| Resonances    | Berger Sehgal               |              |
| DIS           | AGKY                        |              |
| FSI           | hA2018                      |              |
| Others        | Adding radiative correction |              |

#### **GENIE Simulation**

*Genie* v3.0.6 SuSA

|               | electrons                   | neutrinos    |
|---------------|-----------------------------|--------------|
| Nuclear model | Local fermi gas model       |              |
| QE            | Rosenbluth CS               | Nieves model |
| MEC           | SuSAv2                      | SuSAv2       |
| Resonances    | Berger Sehgal               |              |
| DIS           | AGKY                        |              |
| FSI           | hA2018                      |              |
| Others        | Adding radiative correction |              |

#### **Testing neutrino generators** with inclusive electron scattering data

12C(e,e') E = 0.961 GeV  $\theta = 37.5^{\circ}$ 



### **Potential implication on DUNE analysis**



- $v_e$  appearance channel (all inclusive)
- Using existing parameter constraintsfrom reactors + others experiments
- Smearing energy based on events with:
  - 1e1p selection

 $\theta_e > 15^{\circ}$ 

 $P_p > 300 \text{ MeV/c}$ 

No  $P_{\pi+/-} > 150 \text{ MeV/c}$ 

Reconstructed based on simulation Reconstructed based on smearing in electron scattering data