Neutrino Scattering Measurements on Hydrogen and Deuterium: A Snowmass White Paper

Authors: Luis Alvarez-Ruso (IFIC, CSIC), Leo Bellantoni (Fermilab), Alan Bross (Fermilab), Linda Cremonesi (University College, London), Kirsty Duffy (Fermilab), Steven Dytman (Pittsburgh University), Laura Fields (Fermilab), Diego González-Díaz (Santiago de Compostela U., IGFAE), Mikhail Gorshteyn (Uni Mainz), Richard Hill (University of Kentucky and Fermilab), Thomas Junk (Fermilab), Huey-Wen Lin (Michigan State University), Xianguo Lu (Oxford University), Jorge Morfín (Fermilab), Jonathan Paley (Fermilab), Vishvas Pandey (Fermilab and University of Florida), Gil Paz (Wayne State University), Roberto Petti (University of South Carolina), Ryan Plestid (University of Kentucky and Fermilab), Bryan Ramson (Fermilab), Federico Sanchez Nieto (Université de Genève), and Oleksandr Tomalak (University of Kentucky and Fermilab)

NuSTEC discussion, 11 December 2020

RICHARD HILL, U. Kentucky and Fermilab

• The topic spans many different groups and interests:

NF and related Topical Groups: (check all that apply \Box/\Box)

- (NF1) Neutrino oscillations
- (NF2) Sterile neutrinos
- (NF3) Beyond the Standard Model
- (NF5) Neutrino properties
- (NF6) Neutrino cross sections
- (NF8) Theory of neutrino physics
- (NF10) Neutrino detectors
- (TF05) Lattice Gauge Theory
- (TF11) Theory of neutrino physics
- (RF6) Dark sector studies at high intensities

https://www.snowmass21.org/docs/files/summaries/NF/SNOWMASS21-NF6_NF3-TF11_TF5_LauraFields_RichardHill_TomJunk-165.pdf

- Why new H/D data?
 - We have only very imprecise data for neutrino-nucleon interactions
 - Better data would impact many areas of precision measurements in and beyond Standard Model, in and beyond the DUNE era
 - Direct measurements on H/D desirable from both theory and experimental perspectives
- Why NuSTEC?
 - nucleon level interactions are the natural meeting point of particle and nuclear
 - important interplay of theory and experiment to motivate, collect, analyze, and apply new precision data
 - NuSTEC lives at the particle-nuclear and theory-experiment interfaces

• Mailing list:

<u>hydrogen_neutrino_detectors@listserv.fnal.gov</u>

We have had a very stimulating series of talks and discussions

(apologies, not an exhaustive list)

July 29, 2020, Ryan Plestid, "New Physics impact of H/D targets at LBNF"

tonne-scale H detector can probe new models, e.g. very light and very weakly interacting

- lepto-phobic or hadro-philic, or

- xsec/nucleon larger on free nucleon (e.g. spin/isospin coupling, or absence of Pauli blocking, etc., or

- signal involves small nucleon recoil, or

- ...

July 29, 2020, **Xianguo Lu**, *"H from kinematic separation/subtraction versus pure H"*

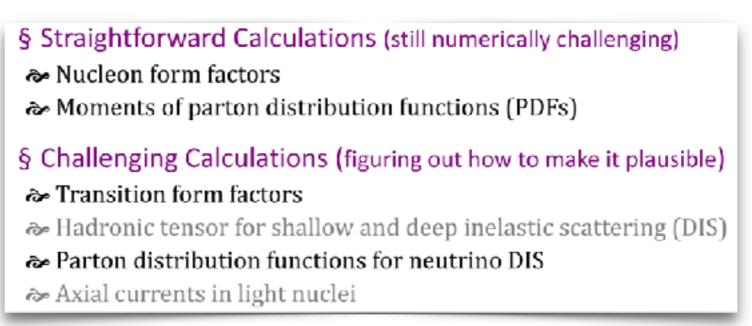
tonne-scale H detector can probe new models, e.g. very light and very weakly interacting

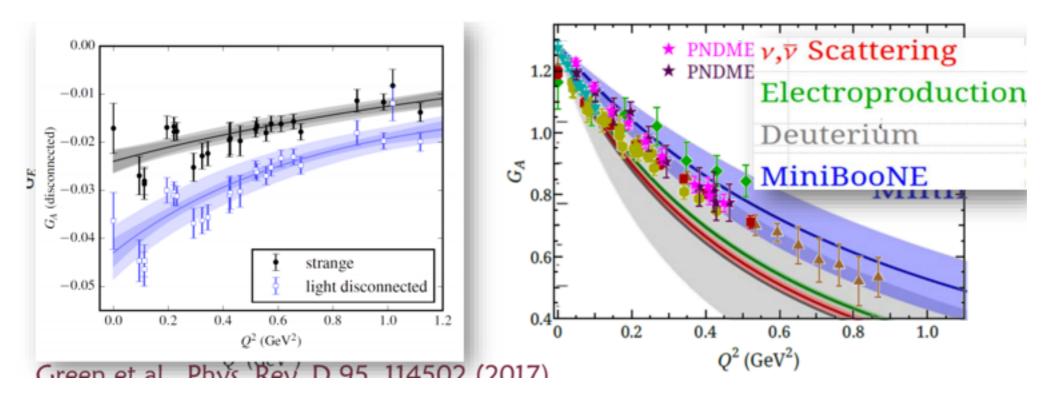
August 5, 2020, Luis Alvarez-Ruso, "Inelastic processes"

Many neutrino-induced inelastic processes poorly constrained already at the nucleon level

August 5, 2020, **Roberto Petti**, "*H/D from kinematic separation and subtraction*"

+ "Solid" Hydrogen concept: $\nu(\bar{\nu})$ -H from subtraction of CH₂ and C targets

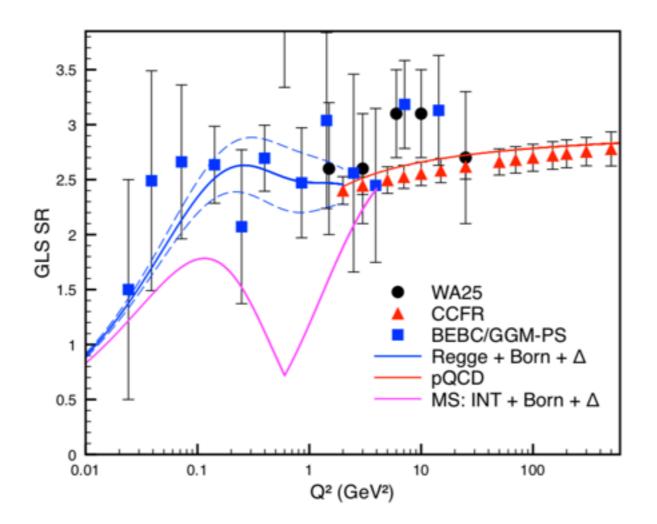

- Exploit high resolutions & control of chemical composition and mass of targets in STT;
- Model-independent data subtraction of dedicated C (graphite) target from main CH₂ target;
- Kinematic selection (transverse plane + energy-momentum conservation) provides large H samples
 of inclusive & exclusive CC topologies with 80-95% purity and 75-96% efficiency.
- \implies Can be a viable alternative to liquid H₂ detectors


August 5, 2020, **Oleksandr Tomalak**, "sensitivity of polarization observables to axial and pseudoscalar form factors"

potential sensitivity to SM and BSM physics from target, beam, recoil asymmetries

August 13, 2020, **Huey-Wen Lin**, "Lattice QCD and Neutrino-Nucleus Scattering"

lots of complementarity/positive interference between lattice QCD and experimental measurements



August 19, 2020, Mikhail Gorshteyn, "Vud and CKM unitarity"

 \gtrsim 3 sigma unitarity violation from Vud

reanalysis of radiative corrections, sensitivity to F3 structure function for inclusive neutrino scattering

August 19, 2020, **Jorge Morfin**, "Inelastic Processes/Bubble Chamber Detectors"

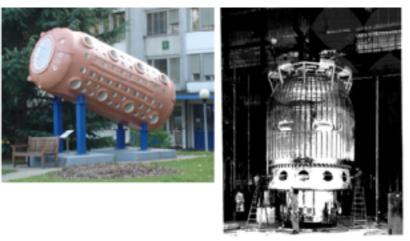


Fig. 2 MRC shatter reserve

- On the left, Gargamelle mainly using heavy liquids like CF₃Br
- BEBC, on right, followed for v + H, v + D and v + Ne/H scattering.

Total analyzed sample ($E_v > 20$ GeV) : 250 \overline{v} and 517 v CC events! No BIG concern for details of systematic errors!

Table 1 Neutrino and antineutrino cross sections						
	Gargamelle [4]	BEBC (this expo	C (this experiment)			
Energy range (GeV)	2-10	20-60	60-100	100-150	150-200	
		ν _π	ν _π	νK	₽K	
ov/E N(ovents)	0.72 ± 0.05	0.67 ± 0.06 136	0.56 ± 0.05 123	0.61 ± 0.05 161	0.51 ± 0.05 97	
o [₽] /E [.] N(events)	0 25 ± 0.02	0.26 ± 0.03 90	0.25 ± 0.03 87	0.32 ± 0.04 73		
$R = a^{\overline{\nu}}/\sigma^{\nu}$	0.40 ± 0.02	0.39 ± 0.05	0.45 ± 0.06	056±0.07		
$\int F_2(x) dx$ $\int xF_3(x) dx$	0.48 ± 0.04 0.41 ± 0.06	0.45 ± 0.04 0.39 ± 0.08	0.39 ± 0.04 0.30 ± 0.08	0.43 ± 0.04 0.24 ± 0.08		
$B = \int x F_3 / \int F_2$	0.86 ± 0.04	D.86 ± 0.10	0.77 = 0.11	0.56 ± 0.12		

Cross sections (in units of 10^{-38} cm² nucleon⁻¹ GeV⁻¹) are corrected to those for an isoscalar target. Errors quoted for the BEBC expension are statistical Systematic errors on all cross sections are estimated to be $\leq 7\%$. Systematic errors drop out in the ratio R, except for the rg point, where an uncertainty of $\pm 10\%$ in the K⁺/K⁻ ratio should be included.

August 26, 2020, Bryan Ramson "Bubble chamber R&D"

ideas for bubble chamber R&D

December 7, 2020, Dustin Keller, "Polarized Target"

potential for asymmetry measurement e.g. on NH3/ND3 target, analogous to Spinquest

novel way to extract certain nucleon-level (H,D) information

Draft white paper exists, discussions ongoing to determine which studies to pursue/include

draft table of contents: (rough and a bit out of date)

Contents

1	Intr	oducti	on	2			
2	Scientific Motivation						
	2.1 Overview and Status of Elementary Amplitudes						
		2.1.1	Invariant form factors	3			
		2.1.2	Electromagnetic form factors	4			
		2.1.3	Charged current vector form factors	4			
		2.1.4	Neutral current vector form factors	5			
		2.1.5	Axial form factors: charged current	5			
		2.1.6	Axial form factors: neutral current	5			
		2.1.7	Form factor parameterizations	6			
	2.2	Compl	ementary constraints on elementary amplitudes	6			
		2.2.1	Lattice QCD	6			
		2.2.2	Muon capture	7			
		2.2.3	Parity violating electron scattering	7			
		2.2.4	Pion electroproduction	7			
		2.2.5	e^+d and e^-d scattering $\ldots \ldots \ldots$	8			
	2.3	Impact	t on the Oscillation Program	8			
		2.3.1	Flux determination	8			
	2.4	Impac	t on the BSM Searches	8			
	2.5	-	t on precision measurements and hadronic physics	8			
		2.5.1	Nuclear beta decay and CKM unitarity	9			
		2.5.2	Nucleon axial radius	9			
3	Experimental Options						
	3.1	The D	UNE Near Detector	9			
	3.2	A Ded	licated Facility in the LBNF Beamline	10			
	3.3		Polarized Targets	13			
4	Cor	nclusio	n	16			

Some discussion of particular nucleon-level amplitudes

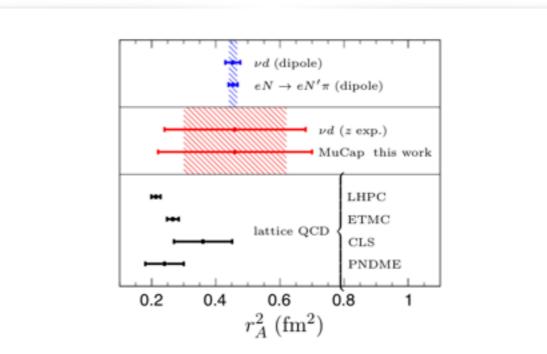


Figure 2: (From Ref. [64]) Squared axial radius determined by different processes. Top: Dipole fits to νd and $eN \rightarrow eN'\pi$ data employed before 2016 resulted in an average r_A^2 with small uncertainty (hatched blue band) [35]. Middle: Replacing the unjustified dipole assumption with the z expansion allowed a model independent extraction of r_A^2 from νd data and increased the uncertainty. The hashed red region represents the best average from this work combining the new determination from MuCap with the νd result. Bottom: Early lattice QCD results denoted by their collaboration acronyms. Several calculations tend towards lower values of r_A^2 compared to the historical dipole average.

Some discussion of reusing Fermilab 15 foot chamber

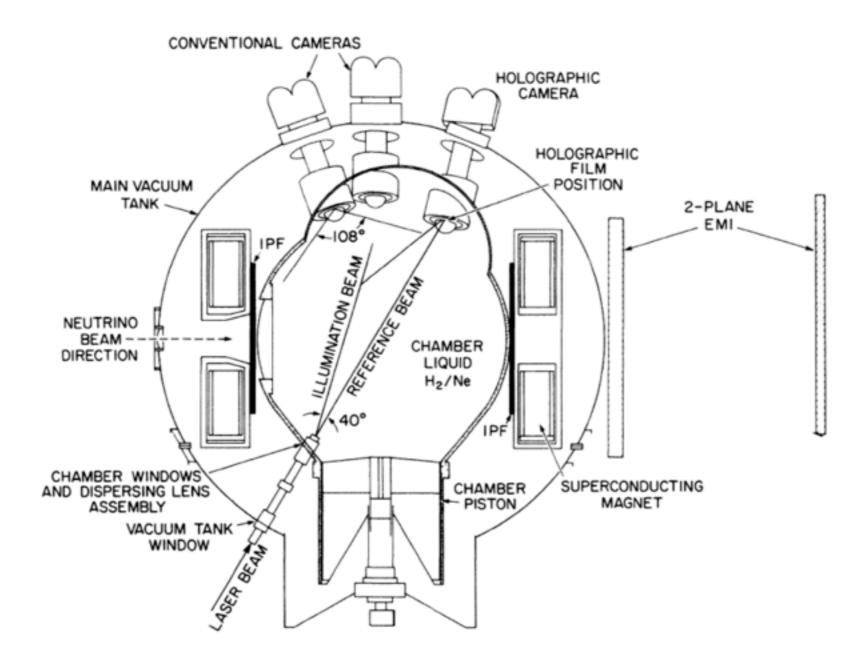


Figure 4: Line drawing of the Fermilab 15 foot bubble chamber.

Some discussion of site selection outside DUNE ND Hall

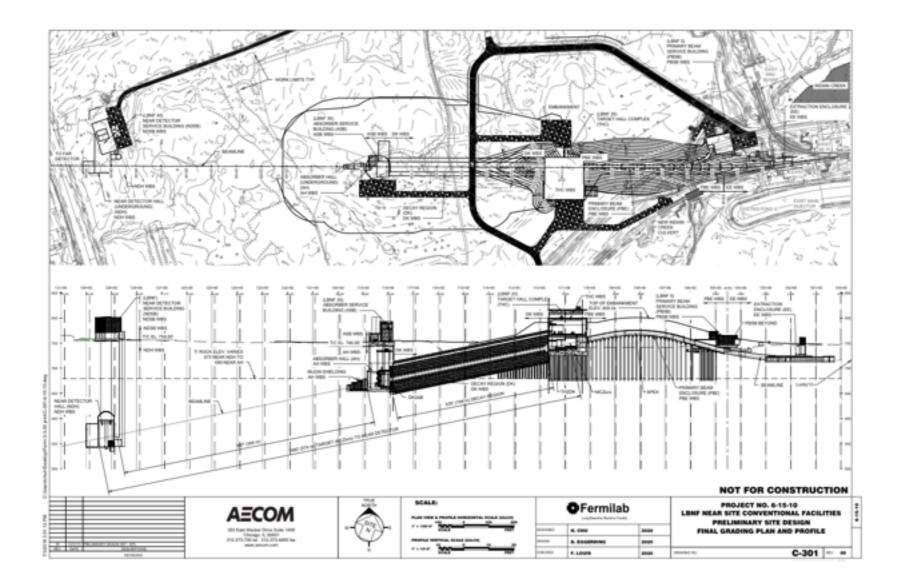


Figure 5: Elevation of the LBNF near site, showing the target hall, decay pipe, and the near detector hall. The boundary between soil and rock is shown. The vertical scale is expanded by a factor of two with respect to the horizontal scale. Both scales are measured in feet.

Some event number estimates

process	$ u_e $	$ u_{\mu}$	$\bar{\nu}_e$	$\bar{ u}_{\mu}$
Total CC	14213.7	928810	4531.34	89068.1
CCQE	0	0	1012.17	27519.9
CCRES	5501.28	527079	890.43	18136.4
CCDIS	8052	359419	2414.98	38695.2
CC charm	166.254	4630.46	40.1165	615.716
CCDFR	438.431	35326.6	128.317	2912.18
Total NC	7304.3	508419	1355.4	27230
NCQE	1115	110667	186.152	5333.75
NCRES	2035.49	191061	365.144	8141.04
NCDIS	3932.28	188098	739.391	12229.4
NCDFR	221.542	18304.2	64.7119	1499.32

Table 1: Predicted events per metric ton per year for the LBNF beam $(1.1 \times 10^{21} \text{ POT})$ on Hydrogen, FHC.

Table 2: Predicted events per metric ton per year for the LBNF beam $(1.1 \times 10^{21} \text{ POT})$ on Deuterium, FHC.

process	ν_e	$ u_{\mu} $	$\bar{\nu}_e$	$\bar{ u}_{\mu}$
Total CC	21492.1	1.40822e + 06	3287.95	62378.9
CCQE	2896.18	291186	427.559	11349.7
CCRES	5589.25	520539	862.322	18219.7
CCDIS	12391.1	562500	1842.94	29442.9
CC charm	233.94	6438.96	38.9266	597.785
CC coh	288.401	23078.3	80.5561	1824.57
Total NC	7516.23	519739	1329.63	26500.7
NCQE	1105.11	109954	182.843	5169.28
NCRES	2122.27	199389	371.05	8221.84
NCDIS	4145.86	197752	735.862	12125.6
NC coh	142.984	12500.5	39.8791	970.796

preliminary

- Next steps
 - Draft white paper exists. May be useful to decouple from extended Snowmass timescale
 - A really interesting group of people and discussions
 - Please get in touch if you are interested to join the mailing list, meetings, and/or catch up on slides and reading material
 - Choose an existing or new topic to contribute