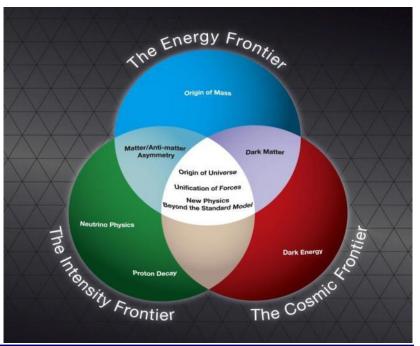
Project X Program and India Collaboration

Steve Holmes July 29, 2011

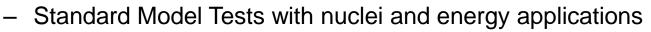
- Fermilab Long Range Plan
- Project X Reference Design
- R&D Plan
- Timeline & Strategy
- India Institutes and Fermilab Collaboration

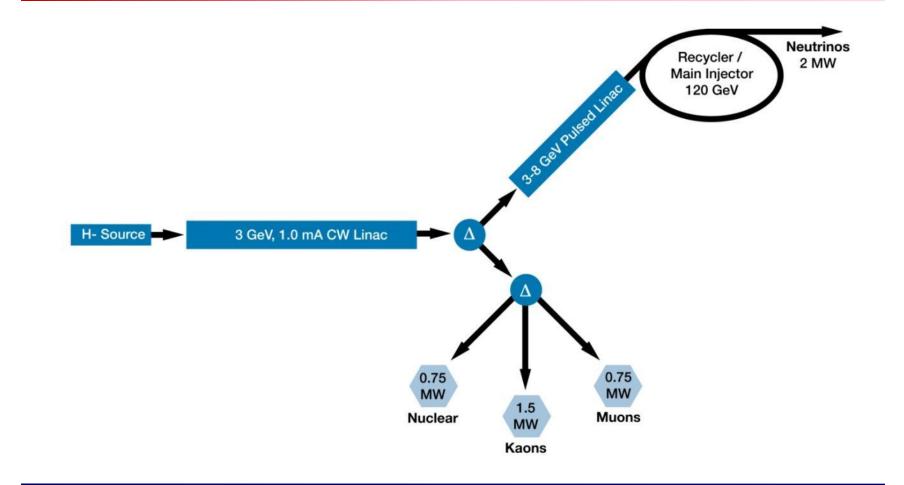

Project X website: http://projectx.fnal.gov

Fermilab is the sole remaining U.S. laboratory providing facilities in support of accelerator-based Elementary Particle Physics. Fermilab is fully aligned with the strategy for U.S. EPP developed by HEPAP/P5.

⇒ The Fermilab strategy is to mount a world-leading program at the <u>intensity frontier</u>, while using this program as a bridge to an <u>energy frontier</u> facility beyond LHC in the longer term.

Project X is the key element of this strategy



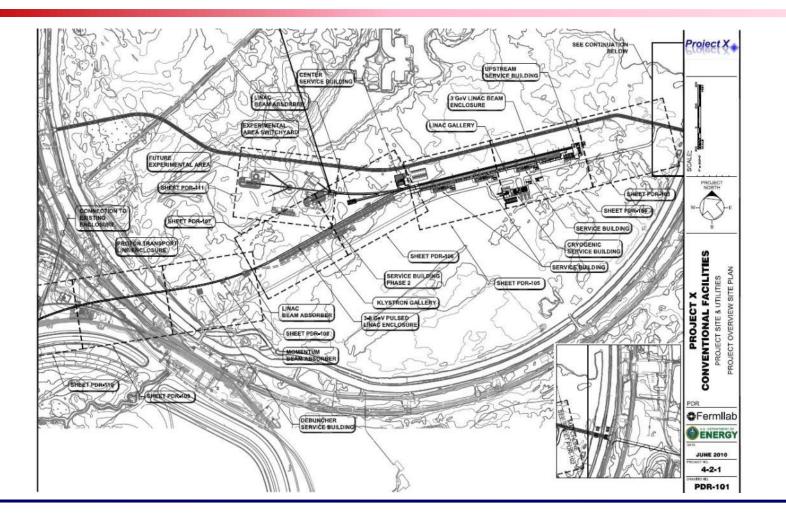


- A neutrino beam for long baseline neutrino oscillation experiments
 - 2 MW proton source at 60-120 GeV
- High intensity, low energy protons for kaon and muon based precision experiments
 - <u>Operations simultaneous</u> with the neutrino program
- A path toward a muon source for possible future Neutrino Factory and/or a Muon Collider
 - Requires ~4 MW at ~5-15 GeV
- Possible missions beyond P5

Reference Design Capabilities

- 3 GeV CW superconducting H- linac with 1 mA average beam current.
 - Flexible provision for variable beam structures to multiple users
 - CW at time scales >1 μ sec, 10% DF at <1 μ sec
 - Supports rare processes programs at 3 GeV
 - Provision for 1 GeV extraction for nuclear energy program
- 3-8 GeV pulsed linac capable of delivering 300 kW at 8 GeV
 - Supports the neutrino program
 - Establishes a path toward a muon based facility
- Upgrades to the Recycler and Main Injector to provide ≥ 2 MW to the neutrino production target at 60-120 GeV.
- ⇒Utilization of a CW linac creates a facility that is unique in the world, with performance that cannot be matched in a synchrotron-based facility.

Performance Goals

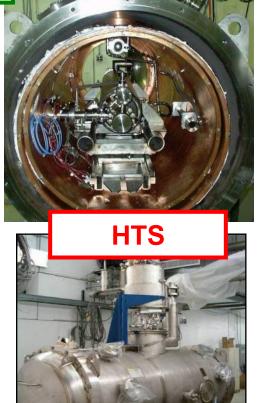


<u>Linac</u>			
Particle Type	H-		
Beam Kinetic Energy	3.0	GeV	
Average Beam Current	1	mA	
Linac pulse rate	CW		
Beam Power	3000	kW	
Beam Power to 3 GeV program	2870	kW	
Pulsed Linac			\backslash
Particle Type	H-		
Beam Kinetic Energy	8.0	GeV	
Pulse rate	10	Hz	
Pulse Width	4.3	msec	
Cycles to MI	6		simultaneous
Particles per cycle to MI	2.6×10 ¹³		J
Beam Power to 8 GeV	340	kW	
Main Injector/Recycler			
Beam Kinetic Energy (maximum)	120	GeV	
Cycle time	1.4	sec	
Particles per cycle	1. <u>6×10¹⁴</u>		
Beam Power at 120 GeV	2200	kW	


- The primary elements of the R&D program include:
 - Development of a wide-band chopper
 - Capable of removing bunches in arbitrary patterns at a 162.5 MHz bunch rate
 - Development of an H- injection system
 - Require between 4.4 26 msec injection period, depending on pulsed linac operating scenario
 - Superconducting rf development
 - Includes six different cavity types at three different frequencies
 - Emphasis is on Q₀, rather than high gradient
 - Typically 1.5E10, 15 MV/m (CW)
 - 1.0E10, 25 MV/m (pulsed)
 - Includes appropriate rf sources
 - Includes development of partners
- Goal is to complete R&D phase by 2015

Project X		SRF Techno	*		
β=0.11 β=0	0.22	β=0.4	β=0.61 β=	=0.9 β=1.0	
		CW		$\rightarrow \leftarrow Pulsed \rightarrow$	
325 2.5-16	MHz 0 MeV		650 MHz 0.16-3 Ge		
Section	Freq	Energy (MeV)	Cav/mag/CM	Туре	
SSR0 (β _G =0.11)	325	2.5-10	18 /18/1	SSR, solenoid	
SSR1 (β _G =0.22)	325	10-42	20/20/ 2	SSR, solenoid	
SSR2 (β _G =0.4)	325	42-160	40/20/4	SSR, solenoid	
LB 650 (β _G =0.61)	650	160-460	36 /24/6	5-cell elliptical, doublet	
HB 650 (β _G =0.9)	650	460-3000	160/40/20	5-cell elliptical, doublet	
<u>ILC 1.3 (β_C=1.0)</u>	1300	3000-8000	224 /28 /28	9-cell elliptical, quad	

Fermilab SRF infrastructure



Cavity tuning machine

1st Dressed Cavity

Strategy and Timeline

- The DOE has a formalized process for moving projects from preconceptual designs through construction
- Current activities
 - Design development
 - R&D
- A set of documentation exists that form the basis for the first step
 - CD-0 = "Mission Need"
 - Reference Design Report
 - R&D Plan
 - Cost Estimate
- The timeline for Project X has not been established within the DOE
 - Internal planning has been based on a start of construction in late 2015/early 2016
 - 5 year construction period (spans two Indian 5-year plans)

- A multi-institutional collaboration has been established to execute the Project X RD&D Program.
 - Organized as a "national project with international participation"
 - Fermilab as lead laboratory
 - International participation established via bi-lateral MOUs.
 - Collaboration MOUs for the RD&D phase outlines basic goals, and the means of organizing and executing the work. Signatories:

ANL	ORNL/SNS	BARC/Mumbai
BNL	MSU	IUAC/Delhi
Cornell	TJNAF	RRCAT/Indore
Fermilab	SLAC	VECC/Kolkata
LBNL	ILC/ART	

 It would be natural for collaborators to continue their areas of responsibility into the construction phase.

Project X Institutional Responsibilities

	Front End	Cav & CMs	RF	Cryo	Instru	Cntrls	MI/Rec ycler	Beam Trnspt	Accel Phys	Systm Integ	Test Facil
ANL		Х	Х						Х		
BNL		Х						Х			
Cornell		Х					Х				
Fermilab	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
LBNL	Х				Х				Х		
SNS					Х						
MSU		Х		Х							
TJNAF		Х									
SLAC	Х		Х				Х		Х		Х
ILC/ART		Х									Х
BARC	Х	Х	Х	Х	Х	Х			Х		Х
IUAC		Х		Х							
RRCAT		Х	Х	Х							Х
VECC		Х		Х							

Indian Collaboration

- Phase 1 and 2 (R&D)
 - Collaboration initiated in 2007
 - ILC/SRF
 - Reorientation to High Intensity Proton Accelerator in 2009
 - SRF at low betas
 - Expanded into other technical areas in 2010
 - All major technical components in the CW linac
 - Formalized management structure for IIFC implemented in 2010
- Phase 3 (Construction)
 - In process of outlining a schedule of Indian deliverables
 - Alignment of Indian technical aspirations with Project X requirements
 - Indian participation in installation and commissioning of Project X
 - Two Indian projects under discussion
 - SNS: 1-2 GeV linac + ring
 - ADS: ~1 GeV CW linac

Indian Collaboration Phase 3

- Accelerating cavities
 - 325 MHz: SSR1, SSR2 ?
 - 650 MHz; β=0.6, 0.9
- RF Power
 - 325 MHz
 - 650 MHz
- Cryomodules
 - 325 MHz: focusing solenoids
 - 650 MHz: focusing quadrupole + other components
- Cryogenic Plant
- Instrumentation/controls
 - 325 MHz: BPMs, LLRF components
 - 625 MHz: BPMs, LLRF components
- Personnel
 - ~20 Scientist/engineer
 - Management, design, fabrication, installation, commissioning

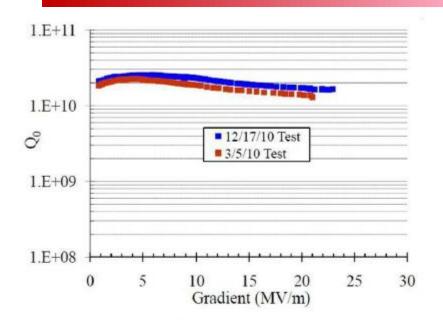


Figure 8: Quality factor Q_0 as a function of accelerating gradient at 2 K, on the second 1.3 GHz single cell cavity.

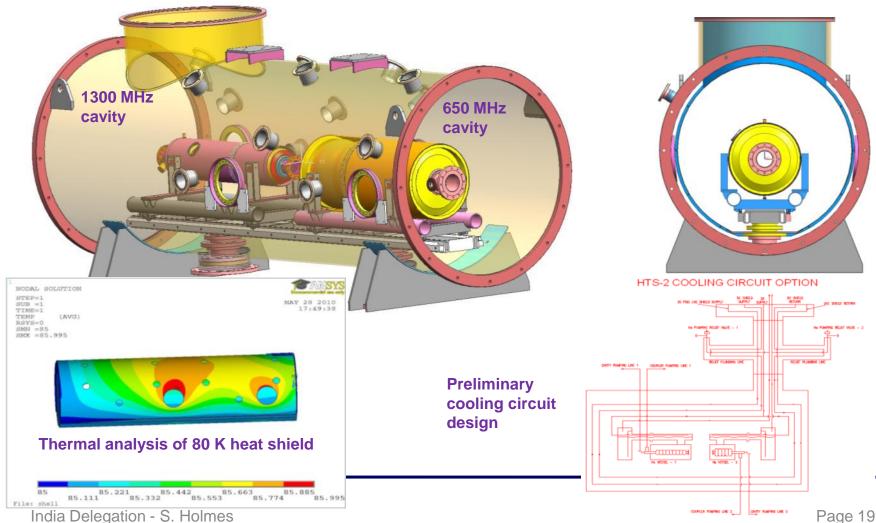
TE1CAT003 with RRCAT-IUAC & FNAL team members

IIFC: 650 MHz forming

*

Die-Punch Set at RRCAT

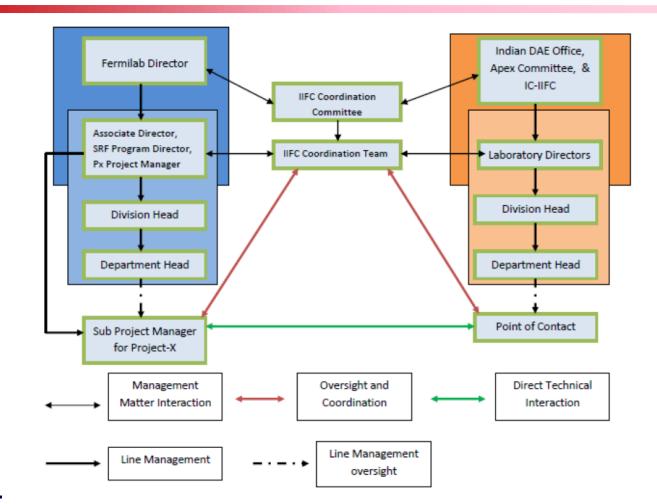
India Delegation - S. Holmes



Aluminum blank, 3mm thickness

Beginning of forming trials with alum magna¹⁸

Project X IIFC: HTS-2 cryostat design



Page 19

IIFC Joint Management (iifc.fnal.gov)

- Project X is central to Fermilab's strategy for development of the accelerator complex over the coming decade
 - World leading programs in neutrinos and rare processes
 - Potential applications beyond elementary particle physics
- A mature design concept has been established, offering capabilities that are unique among any high intensity facility in existence or under design
 - 2 MW to the neutrino program over 60-120 GeV
 - 3 MW to the rare processes program
 - Flexible provision for variable beam formats to multiple users
- R&D underway with very significant investment in srf infrastructure and development
- Strategy for moving the project forward is being developed with DOE
 - Likely staging with CW linac as initial stage
- Indian collaboration has been a primary driver in getting Project X to where it is today
- Project X could be constructed over the period ~2016 2020