OROC Commissioning for high pressure, and measurements and simulation at 1atm in Ar-CO2

Harrison Ritchie-Yates, Alexander Deisting

ND-GAr: HPgTPC+ECAL Weekly Meeting, $14^{\rm th}$ of December, 2020

Introduction

- ▶ We have been commissioning the OROC in a test box at Royal Holloway.
- ▶ We are running tests with Ar/CO2 90%/10% gas mix, using an Fe55 source.
- ► Reading only 1 channel, we have made our first gain measurements.
- Shown here are the test setup at Royal Holloway, the results of the test box commissioning, and a comparison with simulation.

Front and back of the OROC, showing the wires and pad planes, and the shortening cards for readout

OROC test box setup at Royal Holloway

(H. Ritchie-Yates, A. Deisting)

Typical signal waveform in Ar/CO2 90%/10%, using an Fe55 source, with cathode -4936 V, gating grid -120 V, Anode 1775 V

Amplitude spectra, Ar/CO2 90%/10%, using an Fe55 source, with cathode -4936 V, gating grid -120 V, Anode 1775 V

(H. Ritchie-Yates, A. Deisting)

Peak position vs voltage Ar/CO2 90%/10%, Fe55 source, cathode -4936 V, gating grid -120 V

(H. Ritchie-Yates, A. Deisting)

Gain vs voltage, Ar/CO2 90%/10%, Fe55 source, cathode -4936 V, gating grid -120 V

(H. Ritchie-Yates, A. Deisting)

Comparison to simulations

- The comparison will include the latest gas gain garfield++ simulation results for an ALICE IROC in Ar-CO₂ (90-10) at atmospheric pressure.
- The OROC was operated with this mix and pressure we have been taking data with using the OROC in the 1 atm box.
- Still: These are IROC simulations. I started these simulations for our Fermilab colleagues and forgot to change back to OROC.
- ► Our Queen Marry colleagues (Takudzwa, Krzysztof, Linda, John) are joining the simulation effort for ~2.5 months and we will have OROC simulations soon.
- More information on the simulation set-up can be found in previous talks, e.g. https://indico.fnal.gov/event/44384/

Summary: What do we do

- We place a cluster of 25 primary electrons above the wire planes with some randomizing of this position
- Garfield++ tracks the electrons through the amplification stage and does the gas amplification
- ▶ We check after each simulation how many electrons we got for each primary electron
- And then we repeat this step until we have enough statics
- ▶ With enough statistics we fit a Polya:

$$P(G) = \frac{p_0}{\langle G \rangle} \cdot \frac{(\theta - 1)^{(\theta - 1)}}{\Gamma(\theta - 1)} \cdot \left(\frac{G}{\langle G \rangle}\right)^{\theta} \cdot \exp\left(-(\theta - 1) \cdot \frac{G}{\langle G \rangle}\right)$$
(1)
$$\theta = \left(\langle G \rangle^2 - \sigma_G\right) / \sigma_G^2$$
(2)

▶ And extract the fit parameters $\langle G \rangle$, p_0 and σ_G and the χ^2 and N_{dof} .

(H. Ritchie-Yates, A. Deisting)

An example for the Polya fit (Eq. (1)) to a gas gain histogram from an $Ar-CO_2$ (90-10), P = 750 Torr and $V_a = 1660$ V simulation. (H. Ritchie-Yates, A. Deisting) Va = 1660 V simulation.

- ► As a result of many simulations at different voltage settings we get e.g. $\langle G \rangle$, E/P pairs
- We can attempt to describe the simulation results by some additional fits. For example an exponential as:

$$f_{\langle G \rangle}\left(\frac{E}{P}\right) = p_0 \cdot \exp\left(p_1 \cdot \frac{E}{P}\right) \tag{3}$$

- The result can be seen on the next slide
- Caveat: The plotting code had some problems with the highest gain events so the $V_a = 1685 \text{ V}$ and 1710 V points may be slightly lower than actually predicted by garfield++.

Points from an Ar-CO₂ (90-10) simulation at P = 750 Torr with no Penning effect enabled. The line *Fit:* ... is the result of a fit following Eq. (3) to the simulation.

This has been done with the OROC at literally atmospheric pressure and an $\operatorname{Ar-CO}_2$ (90-10) mix.

Points from an Ar-CO₂ (90-10) simulation at P = 750 Torr with no Penning effect enabled. The line *Fit:* ... is the result of a fit following Eq. (3) to the simulation. The second line (*Meas.:* ...) shows a parametrisation which has been fit to data measured with an OROC in the same mixture at atmospheric pressure.

(H. Ritchie-Yates, A. Deisting)

Points from an Ar-CO₂ (90-10) simulation at P = 750 Torr with no Penning effect enabled. The line *Fit:* ... is the result of a fit following Eq. (3) to the simulation. The second line (*Meas.:* ...) shows a parametrisation which has been fit to data measured with an OROC in the same mixture at atmospheric pressure.

(H. Ritchie-Yates, A. Deisting)

- The χ^2/N_{dof} is not outrageously good for the fit to the simulation: 57.97/12.
- The slopes match in 10 % for the measurement and the simulation, the normalisation differs by \sim 15.
- For an actual OROC simulation, the gain is expected to be lower, making the simulation move closer to the measurement data.
- On the other hand: There may have been issues with the gas quality. So a measurement with more pure Ar-CO₂ (90-10) may yield a higher gain. (And an Ar-CO₂ (90-10) where we have a high confidence in the mixing ratio.)
- Simulations by our QMUL collaborators as well as measurements in the HPTPC will tackle both ends of the problems with the current comparison.
- Our Fermilab colleagues will provide their gain curve, so we can add it to the plot and have an IROC to IROC comparison

OROC installed in HPTPC vessel

(H. Ritchie-Yates, A. Deisting)

OROC in HPTPC vessel, first waveforms

Extra Slides

Amplitude spectra, Fe55, cathode -4936 V, gating grid -120 V

Amplitude spectra, Fe55, cathode -4936 V, gating grid -120 V

Gain vs voltage, Ar/CO2 90%/10%, Fe55 source, cathode -4936 V, gating grid -120 V

(H. Ritchie-Yates, A. Deisting)

Amplitude spectra, Fe55, cathode -4936 V, gating grid -120 V

Amplitude spectra, Fe55, cathode -4936 V, gating grid -120 V

Signal with Fe55, as seen on the oscilloscope and as a root file

(H. Ritchie-Yates, A. Deisting)

Amplitude spectra, Fe55, cathode -4936 V, gating grid -120 V

Peak position vs voltage, Fe55, cathode -4936 V, gating grid -120 V

Peak position vs voltage, Fe55, cathode -4936 V, gating grid -120 V

Peak position vs voltage, Fe55, cathode -4936 V, gating grid -120 V, using lower grade Ar/CO2 mix

(H. Ritchie-Yates, A. Deisting)

Peak position vs voltage, Fe55, cathode -4936 V, gating grid -120 V, using lower grade Ar/CO2 mix

(H. Ritchie-Yates, A. Deisting)

Peak position vs voltage, Fe55, cathode -4936 V, gating grid -120 V, using longer signal cable

(H. Ritchie-Yates, A. Deisting)

Comparison of noise with signal through feedthrough

With dsub connector

Amplitude spectra, Fe55, cathode -4936 V, gating grid -120 V

Amplitude spectra, Fe55, cathode -4936 V, gating grid -120 V

Comparing histograms made by oscilloscope and saved waveforms

Signal with Fe55, cathode voltage -4936 V, anode 1700 V, grids -120 V

Issue with reading waveforms has been resolved

(H. Ritchie-Yates, A. Deisting)

Amplitude Spectra with Fe55

(H. Ritchie-Yates, A. Deisting)

Amplitude Spectra with Fe55

(H. Ritchie-Yates, A. Deisting)

(H. Ritchie-Yates, A. Deisting)

Ratio of photo peak to escape peak position

Current configuration inside the vessel

(H. Ritchie-Yates, A. Deisting)

Environmental data	
Item	Value
Chamber pressure Manometer (BarG)	-0.30
Chamber pressure Pirani (BarA)	2.16e-06
Chamber pressure Chrono (BarA)	1.04
Ambient temperature (C)	16
Pressure rise in bar per second: 5. And in Torr l per second (assuming	22E-10 8501): 3.33E-04

Hardware update, tested cathode to 17.4 kV with no issues

caen brd1 ch3 hv Chart

(H. Ritchie-Yates, A. Deisting)

Hardware update, tested cathode to 17.4 kV with no issues

caen brd1 ch3 i Chart

(H. Ritchie-Yates, A. Deisting)

Alice E/p		Pressure (barA)	1	2	3	4	5	
400 V/cm								
		E/p	400 V/cm					
Drift region length	in mm	V/mm	40	80	120	160	200	V/mm
12 rings	435.6	Voltage	17424	34848	52272	69696	87120	V
8 rings	294.4	Voltage	11776	23552	35328	47104	58880	V
4 rings	153.2	Voltage	6128	12256	18384	24512	30640	V
HPTPC E/p		Pressure (barA)	1	2	3	4	5	
HPTPC E/p 200 V/cm		Pressure (barA)	1	2	3	4	5	
HPTPC E/p 200 V/cm		Pressure (barA) E/p	1 200 V/cm	2	3	4	5	
HPTPC E/p 200 V/cm Drift region length	in mm	Pressure (barA) E/p V/mm	1 200 V/cm 20	2	3	4	5	V/mm
HPTPC E/p 200 V/cm Drift region length 12 rings	in mm 435.6	Pressure (barA) E/p V/mm Voltage	1 200 V/cm 20 8712	2 40 17424	3 60 26136	4 80 34848	5 100 43560	V/mm V
HPTPC E/p 200 V/cm Drift region length 12 rings 8 rings	in mm 435.6 294.4	Pressure (barA) E/p V/mm Voltage Voltage	1 200 V/cm 20 8712 5888	2 40 17424 11776	3 60 26136 17664	4 80 34848 23552	5 100 43560 29440	V/mm V V

Lower E/p		Pressure (barA)	1	2	3	4	5	
100 V/cm								
		E/p	100 V/cm					
Drift region length	in mm	V/mm	10	20	30	40	50	V/mm
12 rings	435.6	Voltage	4356	8712	13068	17424	21780	V
8 rings	294.4	Voltage	2944	5888	8832	11776	14720	V
4 rings	153.2	Voltage	1532	3064	4596	6128	7660	V

Pressure Monitoring (6th of July

Signal with Cs137, cathode voltage -5000 V, anode 1750 V, grids -70 V

Similar amplitude signals from data with Cs137, before and after efforts to reduce noise

Reading out only 1 card via an HPTPC preamp

parameter	value
anode voltage V_{a} [V]	1460
gating grid voltage V_{gg} [V]	-70
$\Delta V_{\rm gg}$ [V]	90
temperature T [K]	293.1

Table: Parameters which do not change from simulation to simulation. The readout chamber geometry corresponds to the geometry of an ALICE IROC.

mixture	P [Torr]	$V_{\rm a}$ [V]	Penning gas	Penning coef.	mobility data	ID
Ar-CO ₂ (90-10)	750	1460	n.a.	n.a.	file I	ARCO2_4
Ar-CO ₂ (90-10)	750	1480	n.a.	n.a.	file I	ARCO2_6
Ar-CO ₂ (90-10)	750	1500	n.a.	n.a.	file I	ARCO2_7
Ar-CO ₂ (90-10)	750	1520	n.a.	n.a.	file I	ARCO2_8
Ar-CO ₂ (90-10)	750	1540	n.a.	n.a.	file I	ARCO2_9
Ar-CO ₂ (90-10)	750	1560	n.a.	n.a.	file I	ARCO2_10
Ar-CO ₂ (90-10)	750	1585	n.a.	n.a.	file I	ARCO2_11
Ar-CO ₂ (90-10)	750	1610	n.a.	n.a.	file I	ARCO2_12
Ar-CO ₂ (90-10)	750	1635	n.a.	n.a.	file I	ARCO2_13
Ar-CO ₂ (90-10)	750	1660	n.a.	n.a.	file I	ARCO2_14
Ar-CO ₂ (90-10)	750	1685	n.a.	n.a.	file I	ARCO2_15
Ar-CO ₂ (90-10)	750	1710	n.a.	n.a.	file I	ARCO2_16

Table: Simulation settings for the simulation results shown in this talk: We list the gas mixture, pressures (P), anode voltage V_a , information about the Penning effect (*n.a.* Penning effect disabled, when the Penning effect was enabled the gas and the transfer efficiency for said gas is stated) and which ion mobility file has been used.

ID	mixture	$\langle G \rangle$	$\sigma_{\mathbf{G}}$	Po	χ^2/N_{dof}
ARCO2 4	90-10	2391.72 ± 49.11	1957.36 ± 54.61	102139.91 ± 1665.77	218.82/352
ARCO2 ⁶	90-10	2867.05 ± 57.76	2362.71 ± 64.32	117277.88 ± 1859.53	268.77/354
ARCO2 ⁷ 7	90-10	3260.67 ± 58.69	$\textbf{2654.51} \pm \textbf{65.13}$	128272.56 ± 1846.35	180.71/351
ARCO2 ⁸	90-10	3914.65 ± 74.46	3162.15 ± 82.56	182730.52 ± 2808.38	210.35/354
ARCO2 ⁹	90-10	4634.98 ± 94.95	3778.51 ± 105.62	229898.56 ± 3759.74	254.45/353
ARCO2 10	90-10	5428.15 ± 111.06	4520.69 ± 124.21	236668.88 ± 3759.25	205.49/352
$ARCO2^{-11}$	90-10	6922.95 ± 138.39	5655.93 ± 153.77	282227.64 ± 4491.15	250.53/352
$ARCO2^{-12}$	90-10	8570.85 ± 140.33	7068.38 ± 156.81	$\textbf{456458.98} \pm \textbf{5876.61}$	188.22/352
ARCO2 ¹³	90-10	10922.39 ± 260.04	9090.21 ± 290.19	394984.21 ± 7307.29	300.15/354
$ARCO2^{-14}$	90-10	13100.28 ± 288.44	11161.43 ± 324.71	520867.27 ± 8642.97	230.02/351
$ARCO2^{-15}$	90-10	17152.58 ± 359.45	14554.38 ± 404.46	726231.29 ± 11529.87	205.15/348
$ARCO2^{-16}$	90-10	19359.01 ± 480.34	16037.52 ± 536.35	714389.28 ± 13856.16	234.70/302

Table: Fit results of a Polya fit, *i.e* Equation (1) to the simulated data.

Where do the electrons go? ($V_a = 1660 \text{ V}$)

Where do the electrons go? ($V_a = 1660 \text{ V}$)

(H. Ritchie-Yates, A. Deisting)

Where do the electrons go? ($V_a = 1520 \text{ V}$)

(H. Ritchie-Yates, A. Deisting)

Where do the electrons go? ($V_a = 1520 \text{ V}$)

(H. Ritchie-Yates, A. Deisting)