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Motivation

 In order to make more complete predictions from expressive Beyond the 

Standard Model Theories, it would be useful to have a method of generating 

much faster predictions.
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Bayesian Neural 

Networks
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 Deep neural networks are shown to be effective 

at solving regression problems.

 However, the common approaches to training 

these models using back propagation do not 

provide a reliable uncertainty estimate.

 By assigning prior distributions to the network 

parameters, we can obtain a posterior 

distribution of possible networks using Bayes’ 

theorem given the training data.

 This means that instead of a single prediction, we 

will get a distribution of predictions.

 The distribution of these predictions measure the 

uncertainty in a prediction. 



Bayesian Approach

 If θ denotes the DNN parameters and D the training data, the posterior density is 

given by

 If f represents a neural network, 𝑦 is a prediction, and 𝑥 a point in the parameter 

space of a BSM model, we can compute a distribution over 𝑦 as follows:

 The difficulty with this approach arises from the need to integrate over all 

possible network parameters.

 Markov Chain Monte Carlo (MCMC) methods present a well understood way to 

approximate high-dimensional integrals, such as the ones that occur, for 

example, in lattice gauge field theory.
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Hamiltonian Monte 

Carlo (HMC)

 HMC is the MCMC method of choice to 
deal with high dimensional integrals.

 HMC treats the negative log likelihood of 
the data as a (fictitious) potential 
energy

 The log likelihood is log(𝑃 𝐷 𝜃 𝑃(𝜃))

 Hamilton’s equations are used to 
traverse the network parameter space. 

 The sampler proceeds by alternating 
between deterministic trajectories and 
random changes of direction.
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TensorBNN
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 TensorFlow (TF) provides an extremely powerful 

back end for running machine learning tasks.

 TF compiles training and inference tasks into 

efficient computational graphs and allows 

utilization of GPUs to speed up calculations.

 TF, however, does not provide a direct means of 

training Bayesian neural networks (BNN).

 Using a Hamiltonian Monte Carlo sampler from 

the related TensorFlow-Probability package, we 

built a general-purpose framework for training 

BNNs called TensorBNN.

 The package makes it easy to create networks 

and provides several analysis tools for studying 

the trained networks.

 More details on the package are available here: 

https://arxiv.org/abs/2009.14393

https://arxiv.org/abs/2009.14393

https://github.com/alpha-davidson/TensorBNN



A Case Study

The model chosen for a proof-of-principle is 
the phenomenological Minimal 
Supersymmetric Standard Model (pMSSM).

1. 19 free parameters.

2. The NLO total supersymmetric cross 
section is the main target.

3. The standard SUSY codes, predictions 
take about 3.5 minutes each.

4. The training data are generated from 
these codes.

We also looked at the predicted Higgs mass, 
as well as whether a pMSSM parameter point 
is theoretically viable, as determined by the 
SUSY codes. 
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Cross section

 Generated ~200,000 pMSSM points

 ~160,000 points used to train

 Network architecture: 

 (19, 50, 50, 50, 50, 50, 1)

 After burn-in, performed 13,500 HMC 
sampling steps, and used 1 out of every 
100 sampled networks.

 Overall, the predictions with the BNN had 
a percent error of 3.34%.

 If we use the 𝑃 𝑦 𝑥, 𝐷 to construct 3 
standard deviation credible intervals, but 
treat them as confidence intervals, the 
coverage is 99%.

 When run on GPUs in large batches, 
predictions can be made 15 million times 
faster than with the original SUSY codes.

8

𝑃 𝑦 𝑥, 𝐷



Prediction Performance Plots
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Higgs Boson Mass
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 Training dataset of ~450,000 points

 Network: (19, 50, 50, 50, 50, 50, 1)

 Performed 2,850 HMC sampling steps 
and used 1 out of every 10 sampled 
networks.

 Predictions divided into two 
categories based on whether or not 
the 3-sd credible interval overlaps 
the range 123-127 GeV.

Region Percent Error Coverage

Overlapping 0.10% 87.4 %

Non-overlapping 0.14% 86.7%

Precision Recall F1

0.926 0.997 0.960



Theoretical Viability
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 Training dataset of ~400,000 points

 Network: (19, 50, 50, 50, 50, 50, 1)

 Performed 1,750 HMC sampling steps, 
used 1 out of every 10 sampled 
networks.

10.1016/j.physletb.2020.136041

Strategy Positive

Condition

Recall Precision F1

Best overall 

performance

<NN> > 0.5 0.955 0.953 0.954

Minimize 

false 

negatives

<NN> + 3sd > 0.5 0.982 0.915 0.947



Further Study

 Given the success of TensorBNN in replicating the pMSSM cross section 
predictions, it would be interesting to test its effectiveness on other, 
potentially more interesting, theoretical models.

 The package can be expanded to include other layers, such as convolutional 
layers

 An autocorrelation study revealed that the networks used were still highly 
correlated, suggesting that a greater lag is needed between used networks, 
and therefore longer MCMC chains, which in turn motivates the need for 
work to reduce computation time.

 The package already includes an algorithm to adapt the step size and leapfrog 
step count automatically. But, further tuning of this algorithm may be beneficial.

 The No-U-Turn sampler could reduce the correlation length of the sampling.

 Other potential samplers to investigate: Riemann Manifold Hamiltonian Monte 
Carlo and Learning 2 HMC (l2hmc).
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Questions?
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