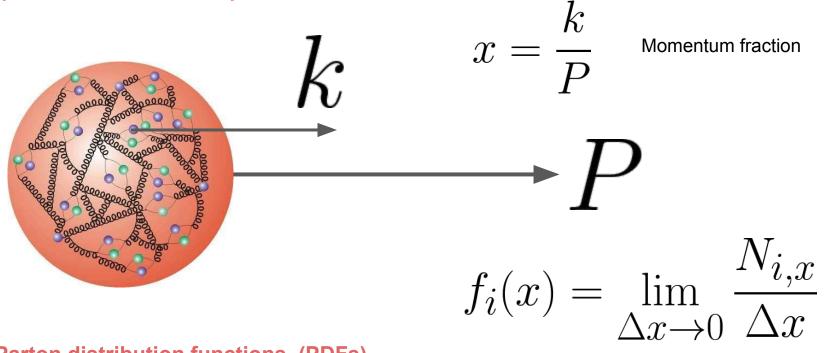
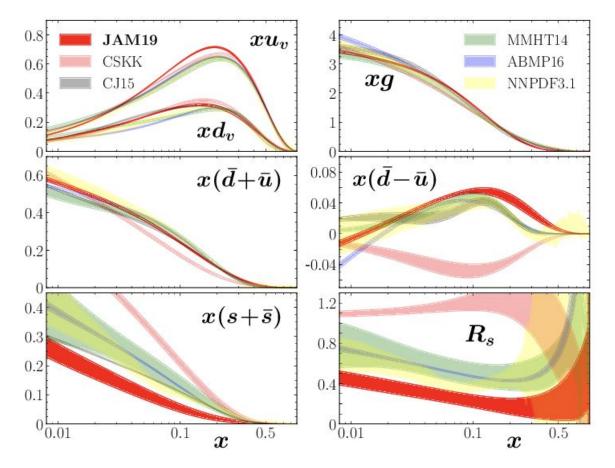

Machine learning techniques to map from experimental cross sections to QCD theory parameters

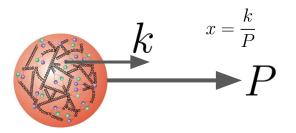


What is QCD

Quantum Chromodynamics (QCD) is the theory that pertains to quark-gluon interactions and the strong force, particularly as components of hadrons.

PDF function : How are quarks and gluons distributed? (number density)

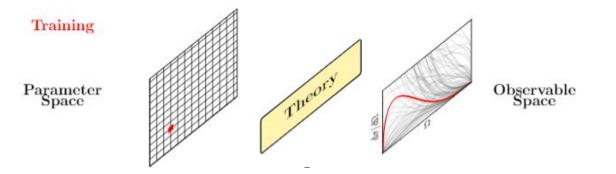


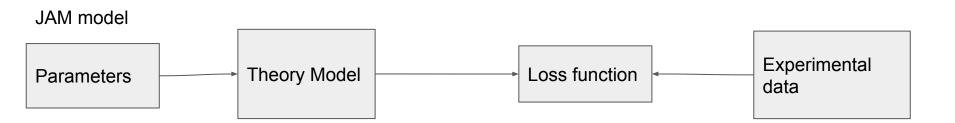

Parton distribution functions (PDFs)

Slide: Nobuo Sato

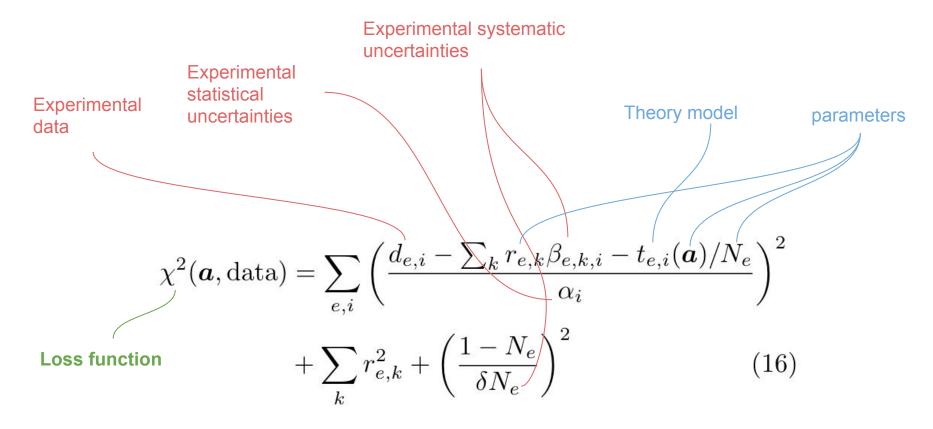
Number of partons of type "i" in an interval x and x+dx

PDF extracted from experimental data

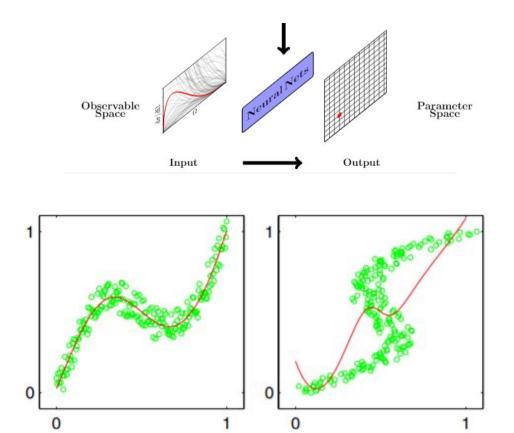

 $u_v = u - u$

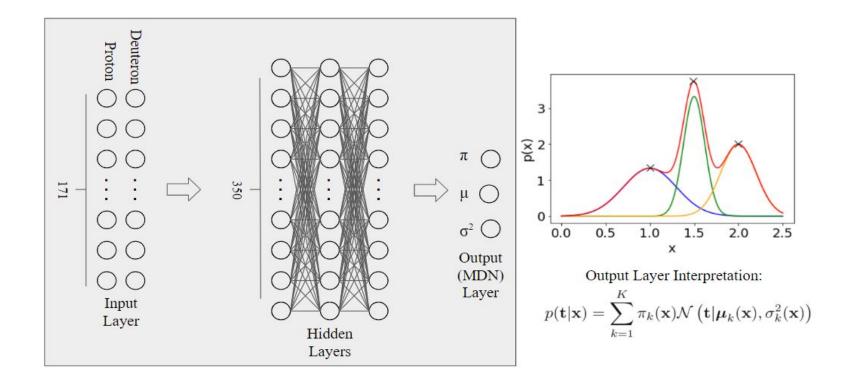

 $d_v = d - d$

Initial problem - Multiple Solutions



Jefferson Lab Angular Momentum (JAM) workflow




How JAM tunes the parameters

Inverse problem with standard ML

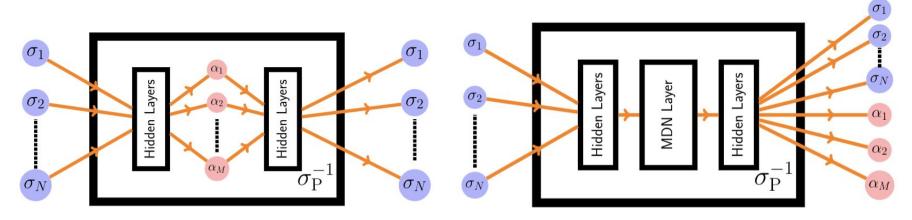
Model Architecture - Mixture Density Network

Further architectures

Auto-Encoder Architecture

Auto-Encoder with embedded MDN architecture

AE



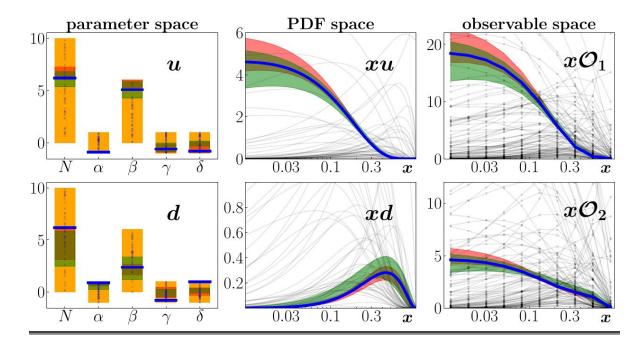
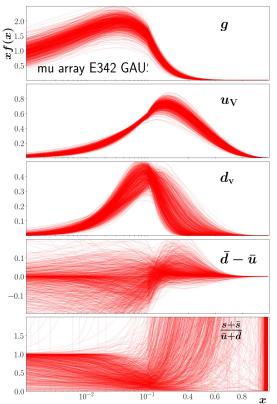
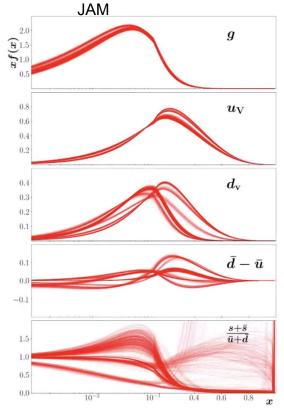
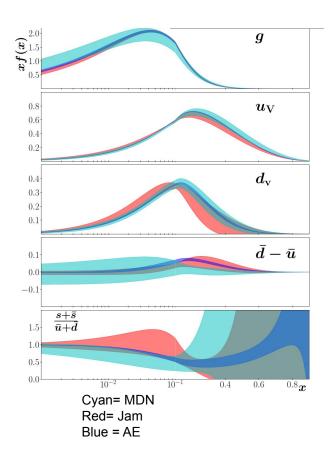

FIG. 3. Inverse mapper based on the parameter supervised autoencoder.

FIG. 4. The parameter supervised autoencoder with the MDN layer.

Where a1...aM are the actual parameters


Data				
	Simplified model	DIS data		
Cross sections	171 σp 171 σn	2680		
(Observable space)	Xsec op and on mimic Fp2 And Fn2 structure functions	The cross section space is defined by the kinematics of the world's inclusive DIS datasets from SLAC (p,d), BCDMS (p,d), NMC (p,d/p) and HERA (p)		
Parameters	10	25		
Parton Distribution Functions (PDFs)	$i = \bar{u}, \ \bar{d},$	$i = \bar{u}, \ \bar{d}, \ s \ \text{and} \ \bar{s}.$		
" probability densities " of parton carrying a momentum fraction x at a squared energy scale Q ^A 2	/	$i=g,\ u_v \ { m and} \ d_v$ And relationships between them		


Simplified Model Results


Green=MDN Red= AE Blue = JAM Yellow = full parameter range

Results DIS Multiple Solutions

Average and Error Plot

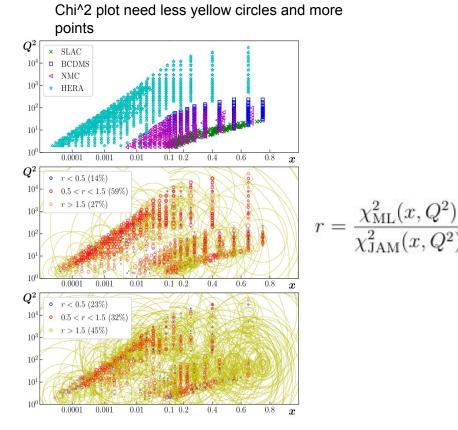


FIG. 8. Upper pannel: Kinematics of inclusive DIS global data sets. Middle pannel: χ^2 ratio to JAM from the PSA predictions. Lower pannel: χ^2 ratio to JAM from the MDN predictions.

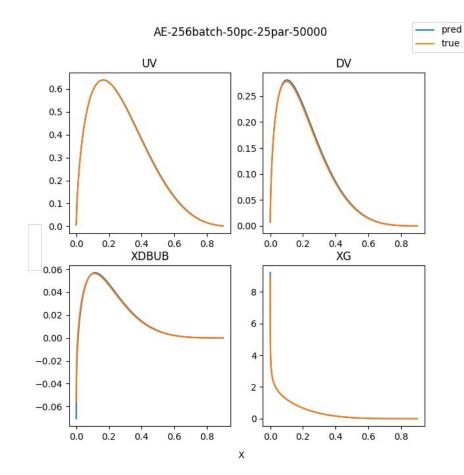
Taking a step back

- While the results were promising, it was important for us to understand how applicable the model would be to universal fits.
- What happens when we have a different number of free parameters
- Which parameters can be effectively predicted in using our methods.
- What happens when we shrink or expand the trained kinematic region?

Answering those questions

Hyperbox coverage search :

Working up from 10% of the hyperbox of entire experimental kinematic space


Parameter Search:

Working up from 2 to 25 free theoretical parameters

No params	Model Architecture	Chi2
2	Auto Encoder	1.041
2	Mixture Density Network	1.20
2	AEMDN	1.066
10	Auto Encoder	1.037
10	Mixture Density Network	2.14
10	AEMDN	1.041

Blind Test Result given one JAM solution -AE

% coverag e	No params	Model Architecture	Chi2
75	20	AutoEncoder	1.049
50	25	AutoEncoder	1.173

This semester -- Honors Thesis

GAN for data generation

Preliminary Results

				Experiment	Points	chi2/npts
Cross-Section Data	4000 points			SLAC (p)	222	2.69
			Discriminator	BCDMS (p)	348	2.09
				NMC (p)	274	3.52
				HERA II NC $e+(1)(p)$	402	2.72
				HERA II NC $e+(2)$ (p)	75	2.29
			HERA II NC $e+(3)(p)$	259	1.06	
Loss = MMD + W loss			HERA II NC $e+(4)(p)$	209	1.22	
	20 params	-		HERA II NC e - (p)	159	2.16
	MMD +W-GP GAN (NN)	and the second		HERA II CC $e+(p)$	39	2.27
				HERA II CC e - (p)	42	1.66
			SLAC (d)	231	5.15	
				BCDMS (d)	254	2.83
				NMC (d/p)	174	1.00

Dr Raghu Ramanujan Meg Houck

Dr Michelle Kuchera Rida Shahid

Eleni Tsitinidi

ALPHA DAVIDSON COLLEGE

Jefferson Lab Thomas Jefferson National Accelerator Facility

Dr Nobuo Sato Dr Wally Melnitchouk

CODU Dr Yaohang Lee Thank you

Yasir Alanazi Manal Almaeen

Extra slides

Architectures				
AE	MDN	AEMDN		
IN: Original Shape (Cross	Original Shape $ Tanh KR$:	Original Shape		
Section)	0.01			
Dense $ 500 Relu$	Dense 500 -	Dense $ 500 Relu$		
Dense $ 300 Relu$	Dense $ 500 Tanh KR: 0.01$	Dense $\ 250\ Tanh$		
Dense $ 100 Relu$	Dropout 0.2	Dropout 0.05		
Dense $ 25 -$	Dense	Dense		
	100 Sigmoid KR: 1E-5	100 Sigmoid KR: 1E-3		
Dense $ 100 Relu$	OUT: MDN Layer 25	MDN Layer 25		
Dense $ 300 Relu$		Dense $ 100 Tanh KR$:1E-5		
Dense $ 500 Relu$		Dense $ 500 Relu$		
OUT: Original Shape		Original Shape		
Mean Squared Error	MDN Mixture Loss	[MDN Mixture Loss, MSE]		
	3 Gausians	5 Gaussians		
LR $1E-5$	LR $1E-5$	LR $1E-5$		
Batch 256	Batch 1024	Batch 256		

The data DIS

Dimensions 2680 Cross sections

$$f_i(x,\mu_0) = \frac{N_i x^{\alpha_i} (1-x)^{\beta_i}}{B(2+\alpha_i,\beta_i+1)}$$
 $i = \bar{u}, \ \bar{d}, \ s \ \text{and} \ \bar{s}.$

$$f_i(x,\mu_0) = \frac{N_i x^{\alpha_i} (1-x)^{\beta_i}}{B(2+\alpha_i,\beta_i+1)} + \frac{N_S x^{\alpha_S} (1-x)^{\beta_S}}{B(2+\alpha_S,\beta_S+1)} \quad i = g, \ u_v \text{ and } d_v$$

Parameters

Dimensions

25

Normalization coefficients: Ng, Nuv,, Ndv and Ns

20 free shape parameters

The data -Toy

Dimensions 101 n | 171 n 101 p | 171 p Cross sections: $\sigma_p(x, Q^2) = 4u(x, Q^2) + d(x, Q^2),$ $\sigma_n(x, Q^2) = 4d(x, Q^2) + u(x, Q^2).$

Here σp and σn mimic what in reality could be the Fp2 And Fn2 structure functions, respectively.

Parameters:

where the Q²-dependent shape parameters $p = \{N_{u,d}, \alpha_{u,d}, \beta_{u,d}, \gamma_{u,d}, \delta_{u,d}\}$ are given by Dimensions 10 $p(Q^2) = p^{(0)} + p^{(1)} q(Q^2) = q(Q^2) + \log\left(\log(Q^2/\Lambda_{\rm QCD}^2)\right)$

$$p(Q^2) = p^{(0)} + p^{(1)}s(Q^2), \quad s(Q^2) = \log\left(\frac{\log(Q^2/\Lambda_{\rm QCD}^2)}{\log(Q_0^2/\Lambda_{\rm QCD}^2)}\right).$$

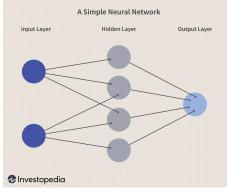
Parton Distribution Functions:

$$u(x,Q^2) = N_u(Q^2) x^{\alpha_u(Q^2)} (1-x)^{\beta_u(Q^2)} (1+\gamma_u(Q^2)\sqrt{x} + \delta_u(Q^2) x),$$

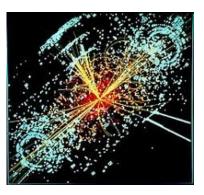
$$d(x,Q^2) = N_d(Q^2) x^{\alpha_d(Q^2)} (1-x)^{\beta_d(Q^2)} (1+\gamma_d(Q^2)\sqrt{x} + \delta_d(Q^2) x),$$

What is ALPhA?

Theory


What do these results mean for our theoretical models describing this process?

How can we represent some of these processes in theoretical functions/terms


Particle Accelerators

Collision Data

Experiment

How can we augment our data (ex fill in missing spots on broken particle track)

How can we design better experiments

Simulate experimental process and provide researchers with interface