The Tottery Tickel
Hypothesis

arxiv:1803.03635

Jared A. Evans - University of Cincinnati

Outline

Introduction to Neural Networks
Convolutional Neural Networks
Weight Importance and Pruning
The Lottery Ticket Hypothesis
Implications and Limitations

A few more recent results

Introduction to Neural Networks

features

@ weights Loss Function

2
MSE = (y -y’)

Introduction to Neural Networks

features

@ weights Loss Function

2
MSE = (y -y’)

Linear Regression

Introduction to Neural Networks

features

@ weights Loss Function

2
MSE = (y -y’)

Backprop to adjust the weights
Learning rate decides size of step

Linear Regression

Introduction to Neural Networks

Sigmoid activation function
Loss Function

\ y = o(w.x + b0) Log Loss ={ ... }

Introduction to Neural Networks

Sigmoid activation function
Loss Function

G
@ y = o(w.x + b0) Log Loss ={ ... }
© oo

wn

Logistic Regression

b0

Introduction to Neural Networks

Heaviside activation function
Loss Function

: w1
@ \ y = O(w.x + b0) 0-1 Loss = 1 for wrong
) o

wn

Perceptron

b0

Introduction to Neural Networks

xX’=wX +b

Loss Function

w’ y=w.x +b

2
MSE = (y -y’)

(=)
@ B

Input layer Hidden layer

?77?

Introduction to Neural Networks

@ v 0 X'= wx +b Loss Function
\ / ’ =w.xX’ +b’
k‘v'v’;l/éa w Yy =WwW.X

N7 MSE = (y - ') 2

Ve s
KRS

2
RS
Q"li‘é‘}> y=w.wx +b)+b=w’x +Db”
® e
X

With no activation function, just a linear transformation!

Linear Regression

Introduction to Neural Networks

O 2
A< @
£
()

x’ = ReLU(w.x +b)

w’ y=w.x +b

Loss Function

2
MSE = (y -y’)

AN
NS
Q£;99~
MZ‘& x forx>0
"ll';“}y ReLU(x) =
%" \\ p o Output layer Oforx<=0
X

K
(=)
) &

N
I
N SK LT Non-linearity
Input layer Hidden layer

Neural Network

Introduction to Neural Networks

: : W’ W”
. x 1 , . X 1 ’ . @ tiE)
k\ l% k\'ll:/zﬁk\vl%@ N
@< O /O
SKFBA NSK IS TN I,
O <V DL O

A AL

et

2»,«90

Input layer

&

Hidden layer

=

C

ieep Neural Network

Convolutional Neural Networks

“HEAD”

g — TRUCK

— VAN

|/>

’ .\.
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CO‘;JUh}IE-IZTED SOFTMAX

e h i

FEATURE LEARNING CLASSIFICATION

E

ol M
JEEEFEREE

L]
|
w
)
=]
(2]
s

Convolutional Neural Networks

“HEAD”

g — TRUCK

— VAN

a
—

’ < wa [] — BICYCLE
INPUT CONVOLUTION + RELU @ CONVOLUTION + RELU POOLING FLATTEN FULLY SOFTMAX
J FIy CONNECTED "

N

FEATURE LEARNING CLASSIFICATION

LLL T BT TI

E

JEEEFEREE

[wss

Convolutional Layers

Convolution passes a
filter over image

Filter weights are
adjusted in training

Learns “features” within
images for identification

Source pixel

e\ /N

—T1 o

3
3]

|~

==
3
—1 3
fE
2
|
0
[

6
11~

At

ay
WY Sarmaam

|_—

N

Convolution filter
(Sobel Gx)

((1x3)+(0x0)+(1x1)+
(<2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

Destination pixel

RN,

LR E TR

el
=]
b=
=1
T
==
b
==
=

—
L1
L1
|
L
L
L
L
| —

VRN A S

AT,

VR

ReLU (Rectified Linear Unit)

RelLU activation function
x 6(x)

RelLU function
introduces
non-linearity

MaxPool Layers

et 30 | O

8 (12 [2 0 2 X 2 Max-Pool 20 | 30
>

SN 37 | 4 s 37

T 25 | 12

A Simple Convolutional Neural Net

Conv - ReLU - MaxPool Conv - ReLU - MaxPool Conv - ReLU - MaxPool

Conv
3 filters 10 filters 10 filters 10 filters 10 filters
32x32 32x32 16x16 8x8 4x4

3x3 filters

3x3 filters 3x3 filters

3x3 filters

A Simple Convolutional Neural Net

Conv - ReLU - MaxPool Conv - ReLU - MaxPool Conv - ReLU - MaxPool

Conv
3 filters 10 filters 10 filters 10 filters 10 filters
32x32 32x32 16x16 8x8 4x4

3x3 filters

3x3 filters 3x3 filters

3x3 filters

Calculations?

A Simple Convolutional Neural Net

Conv - ReLU - MaxPool Conv - ReLU - MaxPool Conv - ReLU - MaxPool

Conv
3 filters 10 filters 10 filters 10 filters 10 filters
32x32 32x32 16x16 8x8 4x4

3x3 filters 3x3 filters
3x3 filters 10%10*3*3*4*4

10*10*3*3*8*8
Calculations? 3*10*3*3*32*32 10*10*3*3*16*16

3x3 filters

VGG-19 (2 more complex CNN)

Head

224x224x064
112x112x128
224x224x3 : [
56x56x256 | | ificati
| \ ——— Classitication
Image |—— 28x28x512
14x14x512 IxTx612 | &
p— (]
= ‘ ? | f 3
\ i maxpool { maxpool | maxpool | maxpool
" maxpool N 0 2 :
{ . depth=256 depth=512 depth=512 size=4096
depth=64 depth=128 3x3conv 3x3conv 3x3 conv FC1
3x3conv 3x3conv conv3_1 conv4_1 convs_1 FC2
convi 1 conv2 1 conv3_2 conv4_2 conv5_2 size=1000
convl 2 conv2 2 conv3d 3 convd 3 conv5 3 softmax

conv3_4 conv4_4 convs_4

VGG- 19 (a more complex CNN)

224x224x3

Image |—

Parameters? 143,667,240

Head
i

|
|
|

»
, !
! e
; L

!
| ”_—> classification

Weight Importance

X1 s 7 x1” ,
‘\%WkaZEm%@
OS L S

@A’s AN

7

)
%

/
&

AN
A

SXKFS OSKILA,
KK = FG5K = G8S
A ,lj{ SR AA:&@AAA X5

L7 DA
ey

7
9N
& g &
o o - @

N

000OOO
X

Weight Importance

M'/
l// = @
“ 4I “ 4I
'.’/‘ 'Q"('IL
)"’07 ‘\’é '¢
"I A‘Ak } L~/ (/‘ $‘V

\7
:‘/

//
«7

('IA

7
é

4
Y%
v

P
'0

{A

}';i; /\&
T IR O)‘}' ;Q;‘lf
A’i’A S

000006
ﬁ
@

Pruning

;"//
N\

IS

— \
SN\ /7 N\ % Y% ’@ o NN
NS T\ NS &)
“’(/"‘@'/" . /"‘("'/"0
X o o N\
<X SEREERPBIRIREET

Q

odPX D NK S
Zﬂi’*ﬁox&@% WA

N SSANIN Y,
V /2 = /I“’*\‘/

\

[
N
N

\
>

N

000006

Pruning

-
et

g /ﬁ\@'

) O o

Networks can be nearly as effective with only ~10% of the weights

X

06® ©

Pruning

after pruning

before pruning

- -

(o)
=
=
S
L —
Q

wn
o
n
Q.
o
o=
>
n

—— ——

pruning

neurons

Iterative Pruning

. Train deep network

. Prune p% of weights (and/or p% of nodes)

. Retrain this smaller network

. Repeat steps 2 - 3 until desired size is achieved

The Lottery Ticket Hypothesis

A randomly-initialized, dense neural network contains a
sub-network that is initialized such that—wbhen trained in
isolation—it can match the test accuracy of the original network

affter training for at most the same number of iterations.

The Lottery Ticket Hypothesis

A randomly-initialized, dense neural network contains a
sub-network that is initialized such that—wbhen trained in
isolation—it can match the test accuracy of the original network

affter training for at most the same number of iterations.

In other words, only a fraction of the network matters.
If you start over with just that fraction, initialized in the
same way, you'll get the same result (or better)!

The Lottery Ticket Hypothesis

Randomly initialized weights

X1 N 7 X17 @
S

O ENYT

% '&:"@&;’e&/

TR @
PN 72\ @
X5’

&
® & ©

7

N\ < ’l’/z
SIRES
7575\

)

{
(‘.«D
%

W

000066

The Lottery Ticket Hypothesis

Train model weights

///ak\\.{//ﬁg\\.% &
N

/] <
AR <
N /A?AQMA@ IR

%

\ﬁ
I\ e A
ARSI

4

%

P

SV &Y e X KR
e
A IEN TN

S

N
4

3
W
(

5

C@G\\\@@@

The Lottery Ticket Hypothesis

Prune trained weights

The Lottery Ticket Hypothesis

Restore to the same random weight initialization as before

o :
. /\Q \

The Lottery Ticket Hypothesis

Restore to the same random weight initialization as before

@ @ | ©/ | ‘

These initial weights are the “winning ticket”

The Lottery Ticket Hypothesis

Retrain for same or even higher model performance!!!

The Lottery Ticket Hypothesis

Works even better with iterative pruning!

Why does this work?

Deep neural networks are very overparameterized

Why does this work?

Deep neural networks are very overparameterized

This overparameterization is buying a /ot of tickets

Why does this work?

Deep neural networks are very overparameterized
This overparameterization is buying a /ot of tickets

With so many tickets, one will often be a winner!

Results

—+— w0 —+— 513 |+ 20| +—70 —F 36 —F 19 F— 51.3 (reinit) b~ 21.1 (reinit)
0.99 0.99 0.99
2 oL il o
098 N 0.98 Tl r. ' Fon l'lu ‘
J
oy oy ' oy
g 097 - g 097 4/ 2
5 s s
Z 3 3
< < <
(é 0.96 1 é 0.96 - ',_:;
i | ,
0.95 4 ¢ t ¢ 095 t ¢ ! 0.95
0-9“ T T 094 T T T ().N T T
0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000
Training Iterations Training Iterations Training Iterations

Figure 3: Test accuracy on Lenet (iterative pruning) as training proceeds. Each curve is the average
of five trials. Labels are P,,,—the fraction of weights remaining in the network after pruning. Error
bars are the minimum and maximum of any trial.

Results

—— 100.0 =513

.99

Accuracy improves for a
network pruned to half size 0.95
and even more for one
pruned to one fifth size

097 1¢

0.96 11

Test Accuracy

.95 4

.94 T T T
0 5000 10000 15000
Training Iterations

Res

Accuracy for 21% and 7% of
network size are similar

Accuracy for 100% and 3.6%
of network size are similar

Smaller sizes are less
accurate

ults

=~ 2kl

Test Accuracy

(.99

—— 70

098 47

.97 =

.96 -

.95 «

.94

1 ' | J

5000 10000 15000
Training Iterations

51.

Reinitializing the weights ruins
improvements, especially for

smaller networks

Results

51.3 (reinit)

21.1 (reinit)

0.99
0.98 1A A EEE kbl N&M
i
= I"' | 1) 1 l
2 097 1AM !
el
< I
7 096 1}
e /
|
0.95 4/
094 41 | , ,
0 5000 10000 15000

Training Iterations

Early-Stop lteration (Val.)

Accuracy at Iteration SOK (Test)

~4= Random Reinit (Oneshot) +~ Winning Ticket (Oneshot) { Random Reinit {lterative) ~4= Winning Ticket (Iterative)

5K 0.9y 1.00
WK l } | Z 0.98 - E 099 4
o E
o | = =
25K 4 { = 097 4 g 098
. z z
20K 4 ! = 0,96 - ? 0974 -
3 5
15K % 095 1 = 096 1- —
7 Z
10K - 2 094 4 g 095 -
:
SK < 093 4 < (094
0 L L) L) L L] L] . oqu Ll Ll L} Ll A Ll L Ll Al L 093 Rl A} Ll ' L) Al . L) L]
100 513 263 135 70 36 \9 10 05 03 100 503 263 135 70 36 19 10 05 03 100 513 263 135 70 36 19 10 05 03
Percent of Weights RenNaning Percent of Weights Remaining Percent of Weights Remaining
(a) Barly-stopping iteration and accuracy for all pruning methods.
0.99 ‘ 25K 0.990
|
0.95 -1 3 B UQHQ a— 1 e 'l R
= 20K 4 : ' | ! ¢ | ! - Sedes WL 4t HIN M)
o4} I € g | TR
\ g Z
£ 15K 4 z
0.96 4 | ‘E, | _:. 0,969 4
95 4+ ! o 2 ‘
0,95 ng.,, = 50.962- ' : : !
1 7 7
094 4 = g 0955 4 t - —
A 5K 4 g ‘
093 1 -\ B T S S — . |
|
0.92 T T T T T T T T 0= T T T T T T 0941 T T T T T
100 513 263 135 70 36 19 1.0 OS5 03 100 875 750 626 S0.1 376 251 127 100 875 750 626 500 36 250 127
Percent of Weights Remaining Percent of Weights Remaining Percent of Weights Remaining

(b) Accuracy at end of training. (c) Early-stopping iteration and accuracy for one-shot pruning.

Early-Stop Itcration (Val.)

Accuracy at Early-Stop (Train)

~4— Conv-2 -}~ Conv-2reinit —}— Conv-4
20K | . B b - -'
’ ; | .'-{ L‘P.{.:.
16K 4 "l |
12K 4— \ - K|
NTLAMT Al
8K e A
4K +4- | S— — P . AV 3
0 : T T
100 : 265 13.7 7.1 37 1.9
65 Percent of Weights Remainin
09 14—
0.8
0.7
0.6
100 514 26,5 137 7.1 3.7 1.9 1.0
Percent of Weights Remaining

Conv-4 reinit \—+— Conv-6 ~}~ Conv-6 reinit
0.85 \
é 0.80 ettty "‘*‘HNI
§ o | bl ool
= 070 SRR S NG (LA L | STV
I e i i
[t
0.60 . |

L] 1 Al
100 514 26.5 13.7 7.1 37 1.9 1.0
Percent of Weights Remaining

.85

0.30

3

0.70

0754

T

L

=
A

& —

AL

=)
2

Accuracy at Iteraton 20/25/30K (Test)

T 1l
100 514 265 137 71 37 1.9 1.0
Percent of Weights Remaining

Interaction with Dropout

—— Conv-2 dropout --f--- Conv-2 Conv-4 dropout - Conv-4 —— Conv-6 dropout - Conv-6
40K : — e 0.85 :
| | | [LA . il G RSy :
— 35K - = A . Z ,}_.
o (T | | M =~ 0.81 - :
- 30K ' ! 1 I/ e i . - ' 3 \\
et | o = o =)
8 osrc ‘ K| 7 Y NS
:E: 25K { ,' _._‘-_;,.»“‘ ?. 0.1 t_, ks d \‘ ‘ !
& { > : /_,f-._‘ { | = 073 | | { 1
8 15K 1 ;{.ﬂ.'-f -+ ' LHF : N I
Z 10K ity + B N e S i e T
= bt 3 0.69 41— — | -} l LI + #*--’L—, —3- A
2 ok d 2 I g 90 2 B | ot N\
“ i & ® / | Tty
Fithisagzag cboemsat@hbsanseatzsdt o taszasadigtisissesdsrent" l r Ic I' ' T T%i
0 T T T R — T T 0.65 T T T T T T T —
100 514 26.5 13 11 37 1.9 1.0 100 514 265 13.7 7.1 3.7 1.9 1.0

sreent of Weirghts Remaining Percent of Weights Remaining

Figure 6: Early-sfopping iteration and test accuracy at early-stopping of Conv-2/4/6 when iteratively
pruned and trained with dropout. The dashed lines are the same networks trained without dropout
(the solid lines in Figure E[) Learning rates are 0.0003 for Conv-2 and 0.0002 for Conv-4 and Conv-6.

Dropout slows training, but improves accuracy even further!

VGG-19 o

rate 0.1 t-- rand reinit ~ rate 0.01
. . rand reini —+— rate 0.1, warmup 10K - rand reini
At high learning rate: 054 T ' " '
Ilterative pruning no be_tter 092 1P Y
than random initialization ~ _ Dk _‘*-H,;_*" N
o) R
. _ T 038 4 - - B B\
No winning tickets found! Ny
3 036+ \ '1
& 0.84 14— : : ~ ~1 \‘\' \
A
1178 |
0.80 =— T - T T —r——

00 410 168 6% IR 12 05 02 Ol

Percent of Weights Remaining

—t+— rate (.1 f rand reinit rate 001

VGG-19
rand reinit = rate 0.1, warmup 10K rand reinit

At high learning rate: 094
lterative pruning no better o | [l

BREEREE i T

than random initialization R

(.90

i ? 0.88 - “-.‘ S\
Warmup: linear turn-on of 2 ._ N
learning rate for first 10K < N\ "
= 84 4 \

Best of both worlds: 052 4

Low LR = lottery tickets 0.8 A ——————————— L L]
High LR = better accuracy

I 410 168 69 TR 1.2 0ns 02 1

Percent of Weights Remaining

Importance of Initialization

Hypothesis: winning ticket weights are close to the final values

Importance of Initialization

w— {not 1n "L'k('” \— i 'lk’kC“
s S < n ¥ v b T » -
16.88% Remaining (layer1) 16.88% Remaiming (layer2) 16.858°% Remasmung (output)
S R
40 4 G~
4
RIS
- = } - =i
' 4 Z
Z 20 o o
>
2 -
0~
1 '+
. -b\% 0 - 0 -
. 1 1 L L 1]
0o 0z 04 0.0 0z 4 00 0.2 04

IFanal Weighs - Inital Weighe Final Weight « Inutial Weaghtl (Fimal Weight « Ininal Weight!

Importance of Initialization

More to do with optimizer and initial location in feature space!

{not in hicket) w10 hicket)

16.88% Remaming (layver2) 16.85°% Remainung (output)

16.33% Remaining (layerd)

40 - 6 -
-4
RH]
S g
2 -

Y
10 4 1 - L’\L\\V
B‘%_ 1_4
0~ - 0~ 0~
Y T T T Y
0.2 04

T
4 AN 0.2 4 Lo

nn 0z A s
IFinal Weighs - Inital Weighe Final Weight « Inutial Weaghtl

(Fimal Weight « Ininal Weight!

Pruned Winning Tickets Generalize

e Overparameterized model too complex
e Extremely pruned model not complex enough

e (Goldilocks pruned network sits on an Occam’s Hill

Limitations

. Study considers minimal datasets (i.e., no ImageNet)

. Sparse networks are obtained through pruning alone
(i.e., not much speed improvement)

. No extreme depth networks considered (e.g., ResNet151)

. On deeper networks, iterative pruning requires learning
rate warm-up to find winning tickets

Evading Warm-up (1903.01611)

Resnet-18

Rather than a warm-up
we can rewind to a
point a few iterations
into training to get a
winning ticket!!!

__\
0.900 - ’!‘—i!\,\’l\’i
0.875 - \Li

0.850

Test Accuracy End of Training

0.825 A

100 64.4 41.7 27.1 17.8 11.8 8.0 5.5
Percent of Weights Remaining

—%— rewind to 0 -%--- random reinit
rewind to 500 random reinit

Evading Warm-up (1903.01611)

Th |S reWi n d i n g m ethod Resnet-50 on ImageNet (Iterative)
even works on 575
=
ImageNet!!! 2
oy 704
2
-
65
100 64.0 41.0 26.2 16.8 10.7 6.9 44
Percent of Weights Remaining
rewind to 6 (oneshot) —eo— rewind to 6 (iterative)

—— rewind to O (iterative) - <~ - random reinit

Generalizability (1906.02773)

Winning Tickets can apply to different datasets!!!
Generalization works better from larger source set

A VGG19 Ticket = ImageNet (Target)

ImageNet

o
©

o

6 _.
Ticket source

ImageNet test accuracy
at convergence (Top 5)

0.44 = CIFAR-10
CIFAR-100
0.2 == ImageNet
— Places365

— Random

o

0
0000 00000000000
{2 N \5\6‘ Ky 9999
6 %5 0 % 3 B % B % 0, 0 % %

Fraction of weights pruned

VGG19 Ticket — CIFAR-10 (Target)

CIFAR-10
>
U \
C vos8
R
U C
© Yoe6
T
93 Ticket source
o §9%% — CIFAR-10
D CIFAR-100
< ©02 __ ImageNet
— — Random
© og

0000 00000000000
0\—)0) So 6 6’99999
o 0% U B 2 % % 0, % % %

Fraction of weights pruned

C Resnet-50 Ticket — ImageNet (Target)

ImageNet

o
(o)

o
o

ImageNet test accuracy
at convergence (Top 5)

o
»

o
[N}

o
QP
Q

Ticket source

Generalizability (1906.02773)

Winning Tickets can apply to different datasets!!!
Generalization works better from larger source set

CIFAR-100
- CIFAR-10
- |mageNet
— Places365
— Random

00000000

° "9

Fraction of weights

7o 356 ‘85,29
G 9 03 %5) %

S
p

rune

<7
d

00\90000
6’\39\9\9

%

9

D

CIFAR-10 test accuracy

Resnet-50\icket = CIFAR-10 (Target)

0.90
0.85
O
£ 0.80
80.75

CIFAR-10

—

00.70 |
0.6 Ticket source
o 0.65 ‘

>
C

O
+ 0.60
@©

0.55

O.SOQ

we CIFAR-10
CIFAR-100

0.2 === ImageNet

=== Random

Fraction of welghts pruned

Generalizability (1906.02773)

Winning Tickets can also transfer across optimizers!
(But need to tune learning rate)

A VGG19: Adam (Source) = SGD (Target) B VGG19: SGD (Source) — Adam (Target)

0.95 CIFAR-10 with SGD —_— CIFAR-10 with Adam

. L
= 0.90 rEu 0.90 "
2.8 T =9 |
N3 Eo.8s < G co8s
£ © @ L
S 3 So.80|°° £ 3 2080

v . (@] .

S & 2075 Ticket source o ® 2 0.75 [os Ticket source
=B S0 Aqars o B S g0l —S€P
< 9 s e — SGD <2 . Adam
O 0.65 | o0 - Random — 0.65 - Random

0.60 % % o‘,eovo&o%o%ob&%%o Q5 9y 99 9 9 o o % % %% {Q.)j ’ed,'“’of%f@of@q,q%f%f%:%&

0 0.0.0_ 0.0 Y0 0. 0.0 0,0 0.0 0 0 0 O 0O 0O

To NLP and RL (Yu et al 2019)

Everything so far has been about computer vision,
but tickets can be found in LSTM models as well

A Lottery Tickets jn LSTM-based B Lottery Tickets in Transformer
Language Modglels (Wikitext-2) Base Models (WMT’14 En2De)

[Ra?nd.om t‘icket - 281
8.0 mmms \Ninning ticket, Ir
Full network 25 4 26
751 ann!ng tfcket, nolr < <
> Winning ticket, no Ir, ong-shot — — 24
= =5 o
X 70 n 201 wn
a7 g 822
a 7 0
— 4
8_6 5 § 15 E 20
18
o 6.0 1
< a 104 === Random ticket B 16/ = Random ticket
5.51 = = Winning ticket, Ir = = Winning ticket, Ir
Winning ticket, no Ir 144 Winning ticket, no Ir
5.01 2 Winning ticket, no Ir, one-shot 12+ Winning ticket, no Ir, one-shot \/\
O N VW O AN~ T O MO N D O O N WYV OO ~NT O N O WM OO
oM ¥ 1w k& MO D e M L IO MKO SRR
o O O O o o o© o O © o O O o o ©o o o © o
Fraction of weights pruned Fraction of weights pruned,

avelhiidines armmhbheoaAdAAIn~Ne

Ticket reward
o
o

50

To NLP and RL (Yu et al 2019)

Everything so far has been about computer vision,

C Lottery Tickets in RL (A2C - ATARI/Control)

Breakqut

= Random ticket
=== \\inning ticket, Ir
Full network
Winning ticket, no Ir

.................

6500 1

6000

Ticket reward

4000 -

3500+

Krull

- w w
w o w
o o o
o o o

Ticket reward

—100 {

=200 1

I
w
o
o

|
B
o
o

=500 1

but tickets can be found in reinforcement learning as well

Acrobot-v1

w=_ Random ticket

| === Winning ticket, Ir

Full network
Winning ticket, no Ir
Winning ticket, no Ir, oneshot

® N NON~NO®
DINNMANMOD =M N OSSO0 0
Lo BT '@ 00 000 0 oVe.oro
C 00 O0CO0O0CO0O0O0O0O0O0O00O0O

Summary

Overparameterized neural nets locate “winning tickets”
These can be iteratively pruned to improve results
Sub-model is in a region favorable for optimizer
Pruned winning tickets do better on training and test
Tickets can be used across datasets and optimizers
Works in not only CV, but also in NLP and RL models

The idea is the subject of a lot of active research

