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Introduction to Neural Networks
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Introduction to Neural Networks
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Introduction to Neural Networks
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Introduction to Neural Networks
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Introduction to Neural Networks
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Convolutional Neural Networks
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Convolutional Neural Networks
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Convolutional Layers

Convolution passes a
filter over image

Filter weights are
adjusted in training

Learns “features” within
images for identification
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ReLU (Rectified Linear Unit)

RelLU activation function
x 6(x)

RelLU function
introduces
non-linearity




MaxPool Layers
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A Simple Convolutional Neural Net
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A Simple Convolutional Neural Net

Conv - ReLU - MaxPool Conv - ReLU - MaxPool Conv - ReLU - MaxPool

Conv
3 filters 10 filters 10 filters 10 filters 10 filters
32x32 32x32 16x16 8x8 4x4

3x3 filters 3x3 filters
3x3 filters 10%10*3*3*4*4

10*10*3*3*8*8
Calculations? 3*10*3*3*32*32 10*10*3*3*16*16

3x3 filters



VGG-19 (2 more complex CNN)
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VGG- 19 (a more complex CNN)
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Weight Importance
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Weight Importance
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Pruning
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Pruning
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Pruning
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Iterative Pruning

. Train deep network

. Prune p% of weights (and/or p% of nodes)

. Retrain this smaller network

. Repeat steps 2 - 3 until desired size is achieved



The Lottery Ticket Hypothesis

A randomly-initialized, dense neural network contains a
sub-network that is initialized such that—wbhen trained in
isolation—it can match the test accuracy of the original network

affter training for at most the same number of iterations.



The Lottery Ticket Hypothesis

A randomly-initialized, dense neural network contains a
sub-network that is initialized such that—wbhen trained in
isolation—it can match the test accuracy of the original network

affter training for at most the same number of iterations.

In other words, only a fraction of the network matters.
If you start over with just that fraction, initialized in the
same way, you'll get the same result (or better)!



The Lottery Ticket Hypothesis

Randomly initialized weights
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The Lottery Ticket Hypothesis

Train model weights

///ak\\.{//ﬁg\\.% &
N

/] <
AR <
N /A?AQMA@ IR

%

\ﬁ
I\ e A
ARSI

4

%

P

SV &Y e X KR
e
A IEN TN

S

N
4

3
W
(

5

C@G\\\@@@




The Lottery Ticket Hypothesis

Prune trained weights




The Lottery Ticket Hypothesis

Restore to the same random weight initialization as before
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The Lottery Ticket Hypothesis

Restore to the same random weight initialization as before
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These initial weights are the “winning ticket”



The Lottery Ticket Hypothesis

Retrain for same or even higher model performance!!!




The Lottery Ticket Hypothesis

Works even better with iterative pruning!




Why does this work?

Deep neural networks are very overparameterized
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Why does this work?

Deep neural networks are very overparameterized
This overparameterization is buying a /ot of tickets

With so many tickets, one will often be a winner!



Results
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Figure 3: Test accuracy on Lenet (iterative pruning) as training proceeds. Each curve is the average
of five trials. Labels are P,,,—the fraction of weights remaining in the network after pruning. Error
bars are the minimum and maximum of any trial.
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Res

Accuracy for 21% and 7% of
network size are similar

Accuracy for 100% and 3.6%
of network size are similar

Smaller sizes are less
accurate
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Reinitializing the weights ruins
improvements, especially for

smaller networks
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Early-Stop lteration (Val.)

Accuracy at Iteration SOK (Test)

~4= Random Reinit (Oneshot) +~ Winning Ticket (Oneshot) { Random Reinit {lterative) ~4= Winning Ticket (Iterative)

5K 0.9y 1.00
WK l } | Z 0.98 - E 099 4
o E
o | = =
25K 4 { = 097 4 g 098
. z z
20K 4 ! = 0,96 - ? 0974 -
3 5
15K % 095 1 = 096 1- —
7 Z
10K - 2 094 4 g 095 -
:
SK < 093 4 < (094
0 L L) L) L L] L] . oqu Ll Ll L} Ll A Ll L Ll Al L 093 Rl A} Ll ' L) Al . L) L]
100 513 263 135 70 36 \9 10 05 03 100 503 263 135 70 36 19 10 05 03 100 513 263 135 70 36 19 10 05 03
Percent of Weights RenNaning Percent of Weights Remaining Percent of Weights Remaining
(a) Barly-stopping iteration and accuracy for all pruning methods.
0.99 ‘ 25K 0.990
|
0.95 -1 3 B UQHQ a— 1 e 'l R
= 20K 4 : ' | ! ¢ | ! - Sedes WL 4t HIN M)
o4} I € g | TR
\ g Z
£ 15K 4 z
0.96 4 | ‘E, | _:. 0,969 4
95 4+ ! o 2 ‘
0,95 ng.,, = 50.962- ' : : !
1 7 7
094 4 = g 0955 4 t - —
A 5K 4 g ‘
093 1 -\ B T S S — . |
|
0.92 T T T T T T T T 0= T T T T T T 0941 T T T T T
100 513 263 135 70 36 19 1.0 OS5 03 100 875 750 626 S0.1 376 251 127 100 875 750 626 500 36 250 127
Percent of Weights Remaining Percent of Weights Remaining Percent of Weights Remaining

(b) Accuracy at end of training. (c) Early-stopping iteration and accuracy for one-shot pruning.



Early-Stop Itcration (Val.)

Accuracy at Early-Stop (Train)
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Interaction with Dropout
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Figure 6: Early-sfopping iteration and test accuracy at early-stopping of Conv-2/4/6 when iteratively
pruned and trained with dropout. The dashed lines are the same networks trained without dropout
(the solid lines in Figure E[) Learning rates are 0.0003 for Conv-2 and 0.0002 for Conv-4 and Conv-6.

Dropout slows training, but improves accuracy even further!
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Importance of Initialization

Hypothesis: winning ticket weights are close to the final values



Importance of Initialization
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Importance of Initialization

More to do with optimizer and initial location in feature space!
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Pruned Winning Tickets Generalize

e Overparameterized model too complex
e Extremely pruned model not complex enough

e (Goldilocks pruned network sits on an Occam’s Hill



Limitations

. Study considers minimal datasets (i.e., no ImageNet)

. Sparse networks are obtained through pruning alone
(i.e., not much speed improvement)

. No extreme depth networks considered (e.g., ResNet151)

. On deeper networks, iterative pruning requires learning
rate warm-up to find winning tickets



Evading Warm-up (1903.01611)

Resnet-18

Rather than a warm-up
we can rewind to a
point a few iterations
into training to get a
winning ticket!!!
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Evading Warm-up (1903.01611)

Th |S reWi n d i n g m ethod Resnet-50 on ImageNet (Iterative)
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Generalizability (1906.02773)

Winning Tickets can apply to different datasets!!!
Generalization works better from larger source set

A VGG19 Ticket = ImageNet (Target)
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C Resnet-50 Ticket — ImageNet (Target)
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o
(o)

o
o

ImageNet test accuracy
at convergence (Top 5)

o
»

o
[N}

o
QP
Q

Ticket source

Generalizability (1906.02773)

Winning Tickets can apply to different datasets!!!
Generalization works better from larger source set
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Generalizability (1906.02773)

Winning Tickets can also transfer across optimizers!
(But need to tune learning rate)

A VGG19: Adam (Source) = SGD (Target) B  VGG19: SGD (Source) — Adam (Target)

0.95 CIFAR-10 with SGD —_— CIFAR-10 with Adam

. L
= 0.90 rEu 0.90 "
2.8 T =9 |
N3 Eo.8s < G co8s
£ © @ L
S 3 So.80|°° £ 3 2080

v . (@] .

S & 2075 Ticket source o ® 2 0.75 [os Ticket source
=B S0 Aqars o B S g0l —S€P
< 9 s e — SGD <2 . Adam
O 0.65 | o0 - Random — 0.65 - Random

0.60 % % o‘,eovo&o%o%ob&%%o Q5 9y 99 9 9 o o % % %% {Q.)j ’ed,'“’of%f@of@q,q%f%f%:%&

0 0.0.0_ 0.0 Y0 0. 0.0 0,0 0.0 0 0 0 O 0O 0O




To NLP and RL (Yu et al 2019)

Everything so far has been about computer vision,
but tickets can be found in LSTM models as well

A Lottery Tickets jn LSTM-based B Lottery Tickets in Transformer
Language Modglels (Wikitext-2) Base Models (WMT’14 En2De)
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Ticket reward
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To NLP and RL (Yu et al 2019)

Everything so far has been about computer vision,

C Lottery Tickets in RL (A2C - ATARI/Control)
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but tickets can be found in reinforcement learning as well
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Summary

Overparameterized neural nets locate “winning tickets”
These can be iteratively pruned to improve results
Sub-model is in a region favorable for optimizer
Pruned winning tickets do better on training and test
Tickets can be used across datasets and optimizers
Works in not only CV, but also in NLP and RL models

The idea is the subject of a lot of active research



