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   Backprop to adjust the weights
Learning rate decides size of step

Introduction to Neural Networks

1

features
weights



x1

x2

x3

xn

w1

wn

y = σ(w.x + b0)

Loss Function

Log Loss = { … }

y
σ(z)

Sigmoid activation function

Introduction to Neural Networks

b0

1

z



x1

x2

x3

xn

w1

wn

y = σ(w.x + b0)

Loss Function

Log Loss = { … }

Logistic Regression

y
σ(z)

Sigmoid activation function

Introduction to Neural Networks

b0

1

z



x1

x2

x3

xn

w1

wn

y = Θ(w.x + b0)

Loss Function

0-1 Loss = 1 for wrong

Perceptron

y
Θ(z)

Heaviside activation function

Introduction to Neural Networks

b0

1

z



x1’

x2’

x3’

1

w’

b’

Loss Function

???

y

x4’

x5’

x1

x2

x3

1

x4

x5

MSE = (y - y’) 2

y = w’.x’ + b’

x’ =  w.x  + bw

Introduction to Neural Networks

Hidden layerInput layer

Output layer



x1’

x2’

x3’

1

w’

b’

Loss Function

y

x4’

x5’

x1

x2

x3

1

x4

x5

MSE = (y - y’) 2

y = w’.x’ + b’

x’ =  w.x  + bw

Linear Regression

y = w’.(w.x  + b) + b’ = w’’.x  + b’’

With no activation function, just a linear transformation!

Introduction to Neural Networks



x1’

x2’

x3’

1

w’

b’

Loss Function

Neural Network

y

x4’

x5’

x1

x2

x3

1

x4

x5

MSE = (y - y’) 2

y = w’.x’ + b’

x’ =  ReLU(w.x  + b)w

                           x for x > 0  
ReLU(x) = 
                           0 for x <= 0{

Introduction to Neural Networks

Hidden layerInput layer

Output layer

Non-linearity



x1’

x2’

x3’

1

w’’’

b’’’

Deep Neural Network

y

x4’

x5’

x1

x2

x3

1

x4

x5

w

Introduction to Neural Networks

Hidden layerInput layer

x1’’

x2’’

x3’’

1

x4’’

x5’’

w’
x1’’’

x2’’’

x3’’’

1

x4’’’

x5’’’

w’’

...



Convolutional Neural Networks

“HEAD”



“HEAD”

Convolutional Neural Networks



Convolution passes a 
filter over image

Filter weights are 
adjusted in training

Learns “features” within  
images for identification

Convolutional Layers



ReLU function 
introduces 

non-linearity 

ReLU (Rectified Linear Unit)



MaxPool Layers
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Image classification

224x224x3

VGG-19 (a more complex CNN)
Head



Image classification

Head

224x224x3

VGG-19 (a more complex CNN)

Parameters?  143,667,240
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Networks can be nearly as effective with only ~10% of the weights



Pruning



Iterative Pruning
1. Train deep network

2. Prune p% of weights (and/or p% of nodes)

3. Retrain this smaller network

4. Repeat steps 2 - 3 until desired size is achieved



A randomly-initialized, dense neural network contains a 
sub-network that is initialized such that—when trained in 

isolation—it can match the test accuracy of the original network 
after training for at most the same number of iterations.

The Lottery Ticket Hypothesis



A randomly-initialized, dense neural network contains a 
sub-network that is initialized such that—when trained in 

isolation—it can match the test accuracy of the original network 
after training for at most the same number of iterations.

The Lottery Ticket Hypothesis

In other words, only a fraction of the network matters.  
If you start over with just that fraction, initialized in the 

same way, you’ll get the same result (or better)!
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The Lottery Ticket Hypothesis
Randomly initialized weights



x1’

x2’

x3’

1

y

x4’

x5’

x1

x2

x3

1

x4

x5

x1’’

x2’’

x3’’

1

x4’’

x5’’

x1’’’

x2’’’

x3’’’

1

x4’’’

x5’’’

...

The Lottery Ticket Hypothesis
Train model weights
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Restore to the same random weight initialization as before
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The Lottery Ticket Hypothesis
Restore to the same random weight initialization as before

These initial weights are the “winning ticket”
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The Lottery Ticket Hypothesis
Retrain for same or even higher model performance!!!
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The Lottery Ticket Hypothesis
Works even better with iterative pruning!



Why does this work?

Deep neural networks are very overparameterized
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Why does this work?

Deep neural networks are very overparameterized  

This overparameterization is buying a lot of tickets

With so many tickets, one will often be a winner!



Results



Results

Accuracy improves for a 
network pruned to half size 
and even more for one 
pruned to one fifth size



Results

Accuracy for 21% and 7% of 
network size are similar

Accuracy for 100% and 3.6% 
of network size are similar

Smaller sizes are less 
accurate



Results

Reinitializing the weights ruins 
improvements, especially for 
smaller networks







Dropout slows training, but improves accuracy even further!

Interaction with Dropout



VGG-19
At high learning rate:
Iterative pruning no better 
than random initialization

No winning tickets found!



VGG-19

Warmup: linear turn-on of 
learning rate for first 10K

Best of both worlds:
Low LR = lottery tickets
High LR = better accuracy

At high learning rate:
Iterative pruning no better 
than random initialization



Importance of Initialization
Hypothesis:  winning ticket weights are close to the final values



Importance of Initialization
Hypothesis:  winning ticket weights are close to the final values



Importance of Initialization
More to do with optimizer and initial location in feature space!



Pruned Winning Tickets Generalize

● Overparameterized model too complex

● Extremely pruned model not complex enough

● Goldilocks pruned network sits on an Occam’s Hill



Limitations
1. Study considers minimal datasets (i.e., no ImageNet)

2. Sparse networks are obtained through pruning alone 
(i.e., not much speed improvement)

3. No extreme depth networks considered (e.g., ResNet151)

4. On deeper networks, iterative pruning requires learning 
rate warm-up to find winning tickets



Evading Warm-up (1903.01611)
Rather than a warm-up 
we can rewind to a 
point a few iterations 
into training to get a 
winning ticket!!!



Evading Warm-up (1903.01611)
This rewinding method 
even works on 
ImageNet!!!



Generalizability (1906.02773)
Winning Tickets can apply to different datasets!!! 

Generalization works better from larger source set



Generalizability (1906.02773)
Winning Tickets can apply to different datasets!!! 

Generalization works better from larger source set



Generalizability (1906.02773)
Winning Tickets can also transfer across optimizers!

(But need to tune learning rate)



To NLP and RL (Yu et al 2019)
Everything so far has been about computer vision,
but tickets can be found in LSTM models as well



To NLP and RL (Yu et al 2019)
Everything so far has been about computer vision,

but tickets can be found in reinforcement learning as well



Summary
● Overparameterized neural nets locate “winning tickets” 

● These can be iteratively pruned to improve results

● Sub-model is in a region favorable for optimizer

● Pruned winning tickets do better on training and test

● Tickets can be used across datasets and optimizers

● Works in not only CV, but also in NLP and RL models  

● The idea is the subject of a lot of active research


