Snowmass2021 EF08 BSM Model specific session

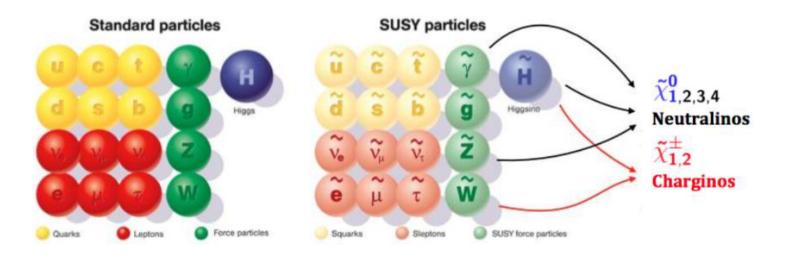
Probing Supersymmetry and Dark Matter at the CEPC, FCC_ee, and ILC

https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF8 EF0 LOI SNOWMASS21 EF08 SUSY DM-126.pdf

Xuai Zhuang

zhuangxa@ihep.ac.cn

10/12/2020


Authors:

Waqas Ahmed^a, Huajie Cheng^{b,c}, Tianjun Li^d, Maria Lopez-Ibanez^d, Tethn Man^d, Shabbar Raza^e, Tianpeng Tang^f, Jianfeng Tu^g, Daohan Wang^d, Xiaochuan Wang^h, Lei Wu^g, Da Xu^b, Jinmin Yang^d, Jiarong Yuan^{b,a}, Jun Zhao^d, Minggang Zhao^a, Han Zhou^g, Bin Zhuⁱ, Chenzheng Zhu^b, Xuai Zhuang^b

中國科學院為維物服為完備 Institute of High Energy Physics Chinese Academy of Sciences

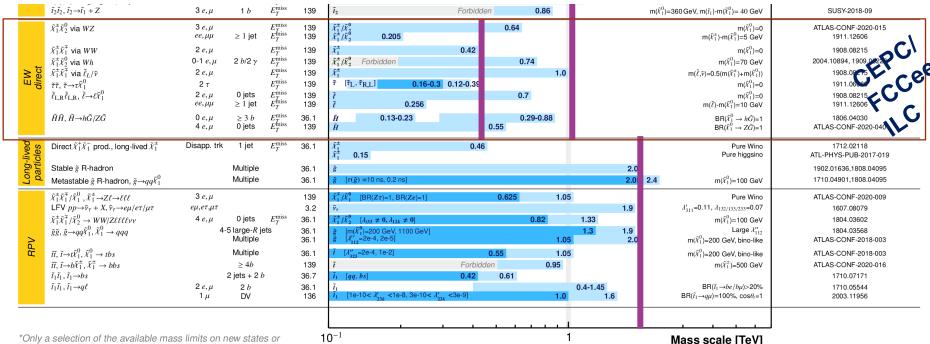
Motivation


- SUSY is one of the most favorite candidate for physics BSM, which can
 - provide a natural solution to the gauge hierarchy problem,
 - provide DM candidate with PRC ,
 - achieve gauge coupling unification,
 - **>**
- However, SUSY searches at LHC have already given very strong constrains on SUSY parameters, see next slide:

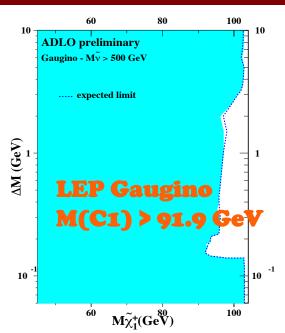
ATLAS SUSY Searches* - 95% CL Lower Limits

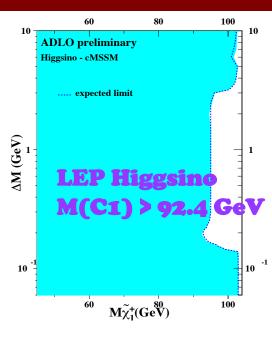
July 2020

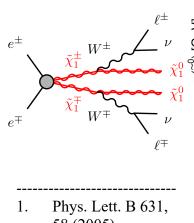
ATLAS Preliminary

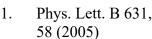

 $\sqrt{s} = 13 \text{ TeV}$

^{*}Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

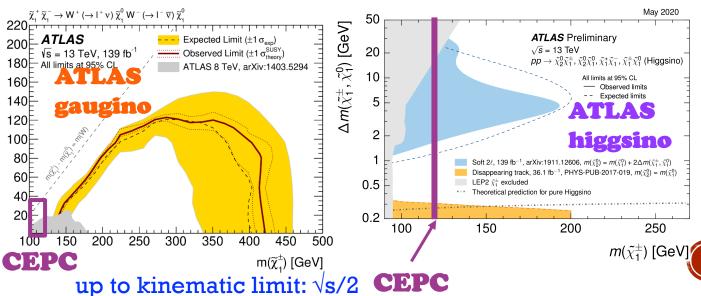

For CEPC, FCCee, and ILC:

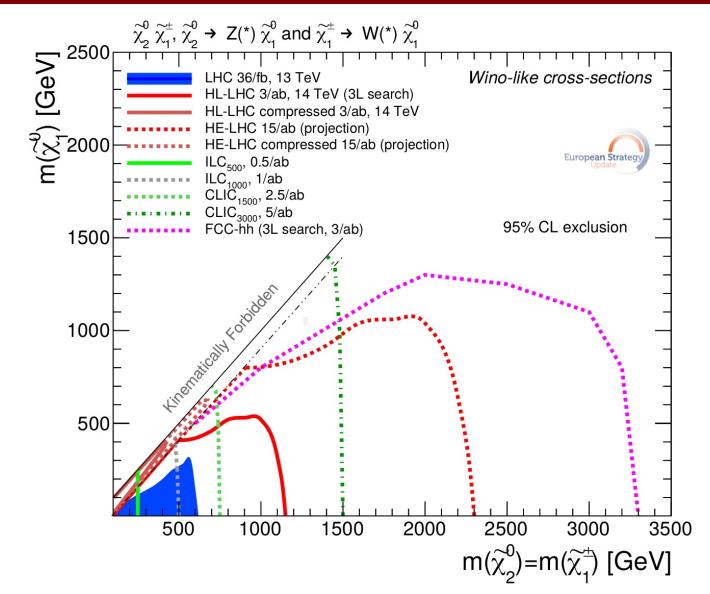

- Difficult for squark/gluino production
- ➤ Mainly concentrate on the generic searches for the charginos, neutralinos, and sleptons. and some relevant dark matter searches as well.




Gaugino & higgsino

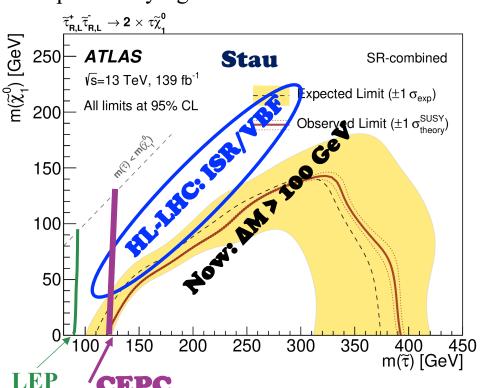
- ➤ Light gauginos have larger x-sec in lepton colliders with lower energy
- > The naturalness conditions from the low-energy finetuning measures generically predict the light Higgsinos



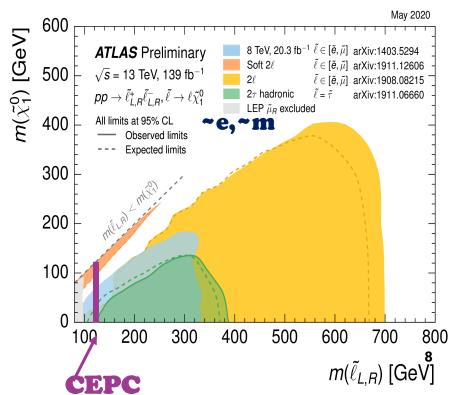


- Phys. Rev. D 73, 095004 (2006)
- arXiv:1212.2655

Current status: EU Strategy-gaugino

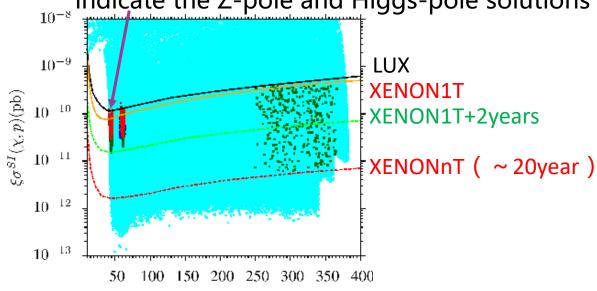



Current status: EU Strategy-higgsino



Stau & smuon

- In the super-natural supersymmetry [arXiv:1403.3099 etc.], the observed DM relic density is realized via the LSP neutralino light stau coannihilation, LSP neutralino is Bino dominant, the right-handed sleptons are light as well
- The muon g-2 excess can be naturally explained by light smuon


- Light Neutralino Searches at CEPC
 We have two typed of Light neutralinos solutions that is solutions with correct relic density (Z-resonamce and h-resonance)¹ and neutralino with large density ²
- At CEPC we can probe it via

 $e^+e^ightarrow e^+e^- + \gamma
ightarrow ilde{\chi}^0_1(bino) + ilde{\chi}^0_1(bino) + \gamma$

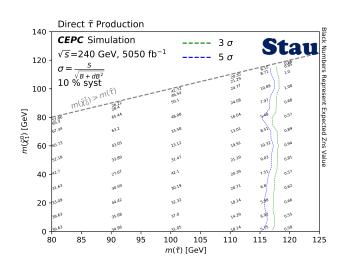
points satisfy the Aqua REWSB and LSP neutralino conditions.

Red, blue and green solutions represent the sets of points with relic density consistent with, greater than and smaller than 50 WMAP9 bounds, respectively

The two dips around 45 GeV and 62 GeV indicate the Z-pole and Higgs-pole solutions

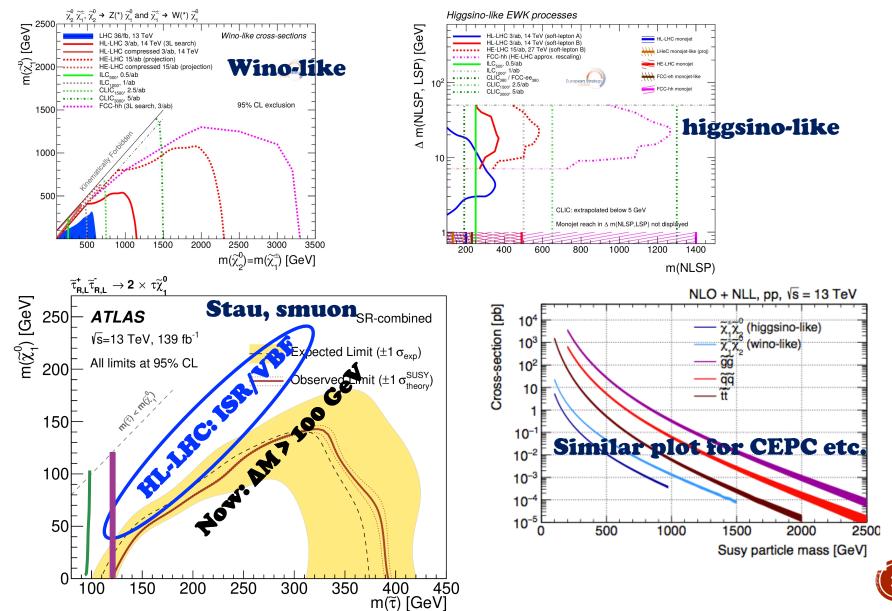
Rescaled spin-independent ($\xi \sigma SI(\chi, p)$) rate $\overline{\text{vs. LSP neutralino mass m}} \sim \chi_1^0$

¹arXiv:1709.06371 ²arXiv:1409.3930


Generalized Minimal Supergravity (GmSUGRA)

Light Neutralino Searches at CEPC

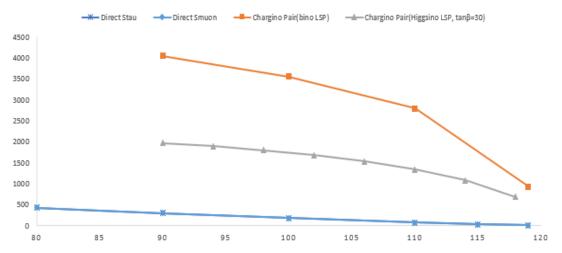
- The light neutralinos with large relic density may also be probed at the CEPC
- At the CEPC, the bino can be pair-produced via t- channel selection and then bino decays into axino and photon $(\tilde{\chi}_1^0 \to \tilde{a}\gamma)$ as follows
- $ullet e^+e^-
 ightarrow ilde{\chi}^0_1(bino) + ilde{\chi}^0_1(bino)
 ightarrow 2 ilde{a} + 2\gamma$


Inputs for Snowmass report and white paper

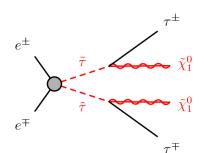
For light charginos, neutralinos, and sleptons, the prospected 2D 5σ discovery contour as a function of SUSY particle mass will be provided (more at backup)

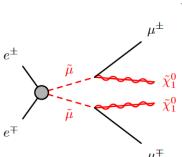
- Status/progress/contributions to snowmass:
 - For bino-like and higgsino-like EWKinos, stau and smuon, results are almost done, paper draft preparing is going-on
 - For light neutralino, GmSUGRA scaning is going on
 - SUSY cross section summary plot is on-going
 - 2-3 paper drafts to be provided as inputs
- Above should be fit the Electroweak pMSSM for EF08

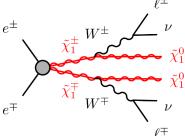
Curves contributed to a Snowmass report summary plot (to be discussed)



Sell Brown Source State .




Some Ongoing Analyses



Cross-section based on Madgraph calculation

- > Production of chargino pairs decaying via W bosons
- Production of chargino pairs decaying via W bosons
- Direct production of stau pairs
- Direct production of smuon pairs

TECHNICAL DETAIL

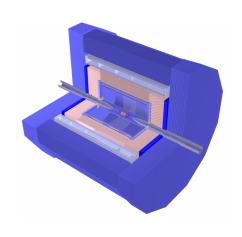
About CEPC

ECM=240GeV, higgs factory, 100 km circumference, 2 interaction points. ILD-like detector

Software

Signal samples: MadGraph+Pythia8

Simulation: Mokka


Reconstruction: Marlin

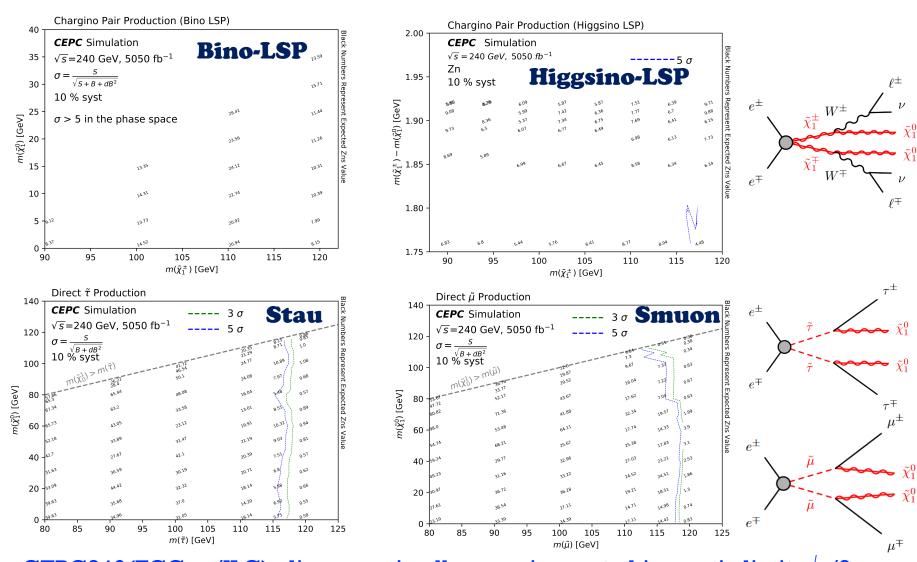
Normalized to 5050 fb⁻¹

Dominant backgrounds:

 \succ SM processes with two-e or two- μ or two- τ and large missing energy final states.

process	Cross Section [fb]		
μμ	4967.58		
ττ	4374.94		
$WW \to \ell\ell$	392.96		
$ZZorWW \rightarrow \mu\mu\nu\nu$	214.81		
$ZZorWW \rightarrow \tau \tau \nu \nu$	205.84		
$\nu Z, Z \to \mu \mu$	43.33		
$ZZ o \mu \mu \nu \nu$	18.17		
$\nu Z, Z \to \tau \tau$	14.57		
ZZ o au au u u u	9.2		
$\nu\nu H$, $H o au au$	3.07		
$e\nu W$, $W \to \mu\nu$	429.2		
$e\nu W,W o au u$	429.42		
$eeZ, Z \rightarrow \nu\nu$ 29.62			
$eZ, Z \rightarrow vv \text{ or } evW, W \rightarrow ev$ 249.34			

Dual Readout Calorimeter

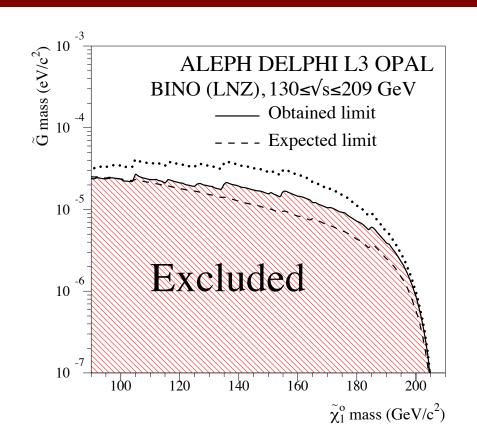

Preshower

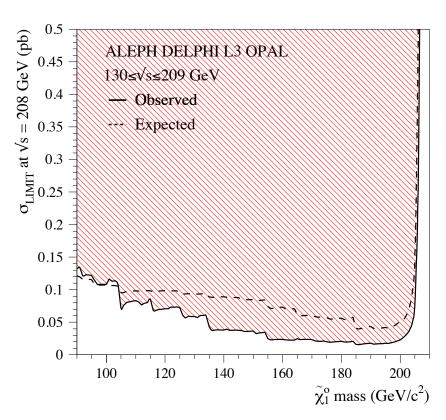
DCH Rout = 200 cm DCH Rin = 30 cm

Cal Rin = 250 cm

Cal Rout = 450 cm

Preliminary Results




CEPC240(FCCee/ILC): discovery in all scenarios up to kinematic limit: $\sqrt{s/2}$

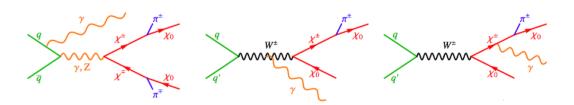
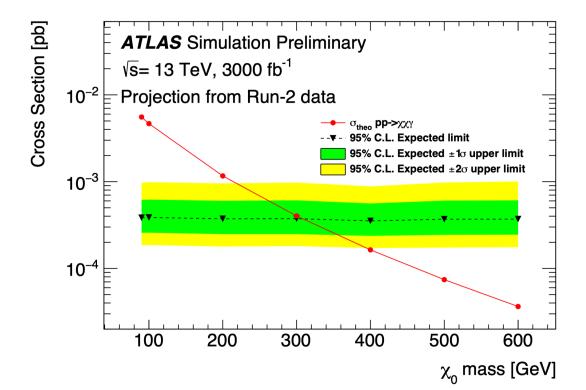
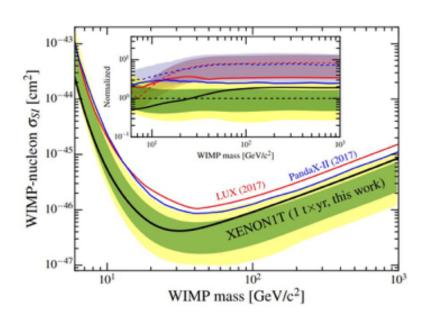
The map use $\frac{S}{\sqrt{S+B+dB^2}}$ as the sensitivity (stat + 10% syst)

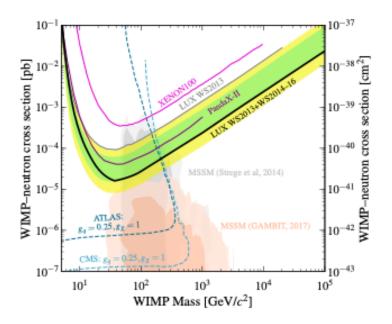
	Point 1	Point 2	Point 3	Point 4
m_0	1387	1439	1449	1537
$m_{ ilde{Q}}$	1280.8	1316	1358.3	1404.1
$m_{\widetilde{U}^c}$	1748.5	1851.1	1765.8	1981.3
$m_{ ilde{D}^c}$	1790.6	1857.7	1715.7	1945.9
$m_{\widetilde{I}}^{-}$	19.8	140	912.9	475.7
m _{Ēc}	472.6	192.6	756.2	132.2
M_1	0.1588	1.822	96.81	132.6
M_2	790.9	1015	812.9	1023
M_3	-1186	-1517.9	-977.33	-1203
$A_t = A_b$	3944	3693	3632	4981
$A_{ au}$	241	-536.3	-403.1	-238.2
tan eta	28.3	34.7	17.6	21.3
$m_{H_{U}}$	673.5	836.3	2631	3284
m_{H_d}	1193	647.3	2618	3284
m_h	123	122	123	125
$m_{H,A}$	1582,1572	1394, 1385	2515,2499	3060,3040
$m_{H^{\pm}}$	1585	1397	2516	3061
$m_{\widetilde{g}}$	2638	3297	2220	2676
$m_{ ilde{\chi}_{1,2}^0}$	5.84,682	<mark>8.8</mark> , 878	45.9,326	<mark>62</mark> ,355
$m_{{ ilde \chi}_{3,4}^0}$	2152, 2152	2461,2461	337, 712	363, 882
$m_{\tilde{\chi}_{1,2}^{\pm}}$	684, 881	2155, 2462	333,704	362,876
$m_{\widetilde{u}_{L,R}}$	2625,2832	3165,3342	2374,2542	2752,2975
$m_{\tilde{t}_{1,2}}$	1838, 2056	2394,2607	1173, 1731	1069 ,1811
$m_{\widetilde{d}_{L,R}}$	2627, 2880	3166, 3388	2375,2561	2753, 3016
$m_{\tilde{b}_{1,2}}^{-, n}$	1957, 2500	2447,2813	1717 ,2433	1812,2777
$m_{\tilde{\nu}_{(1,2),3}}$	437, 434	549,522	978, 935	670, 532
$m_{\widetilde{e}_{L,R}}$	447, 574	550, 546	984 ,909	683,
$m_{ ilde{ au}_{1,2}}$	356,618	265,627	816, 941	264 ,549
$\sigma_{SI}(pb)$	3.151×10^{-13}	3.98×10^{-13}	8.05×10 ⁻¹¹	7.33×10^{-11}
$\Omega_{CDM} h^2$	574	86	0.11	0.103

Mono-photon (SUSY, ED, DM)

e+e- → chi_1 grav → grav grav gamma grav: gravitino

HL-LHC: DM


Figure 1: Some representative diagrams for the pure WIMP triplet in $\gamma + E_{\rm T}^{\rm miss}$ final states. The χ^{\pm} particles decay into the stable χ_0 DM candidate and soft pions which are not reconstructed [3].

ATL-PHYS-PUB-2018-038

DM: Direct Detection Bounds

$$\sigma_p^{\rm SI} \propto \frac{m_Z^4}{\mu^4} \left[2(m_{\widetilde{\chi}_1^0} + 2\mu/\tan\beta) \frac{1}{m_h^2} + \mu\tan\beta \frac{1}{m_H^2} + (m_{\widetilde{\chi}_1^0} + \mu\tan\beta/2) \frac{1}{m_{\widetilde{Q}}^2} \right]^2$$

$$\text{Blind Spot:} \qquad 2\left(m_{\widetilde{\chi}_1^0} + 2\frac{\mu}{\tan\beta}\right)\frac{1}{m_h^2} \simeq -\mu\tan\beta\left(\frac{1}{m_H^2} + \frac{1}{2m_{\widetilde{Q}}^2}\right) \qquad \frac{\mu\times m_{\widetilde{\chi}^0} < 0}{m_{\widetilde{\chi}^0} \simeq M_1}$$

Cheung, Hall, Pinner, Ruderman'12, Huang, C.W.'14, Cheung, Papucci, Shah, Stanford, Zurek'14, Han, Liu, Mukhopadhyay, Wang'18

$$\sigma^{\mathrm{SD}} \propto \frac{m_Z^4}{\mu^4} \cos^2(2\beta)$$

EU Strategy-SUSY: ~g

https://arxiv.org/pdf/1910.11775.pdf Hadron Colliders: gluino projections **European Strateg** (R-parity conserving SUSY, prompt searches) $\int \mathcal{L} dt [ab^{-1}] \sqrt{s} [\text{TeV}]$ Mass limit (95% CL exclusion) **Conditions** Model $\tilde{g}\tilde{g}, \, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ $m(\tilde{\chi}_1^0)=0$ 3 14 3.2 TeV HL-LHC $\tilde{g}\tilde{g}, \, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ $m(\tilde{g}) \sim m(\tilde{\chi}_1^0) + 10 \text{ GeV}$ 3 14 1.5 TeV $\tilde{g}\tilde{g}, \, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$ $m(\tilde{\chi}_1^0)=0$ 3 14 2.5 TeV $m(\tilde{\chi}_1^0)=500 \text{ GeV}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{c}\tilde{\chi}_1^0$ 3 14 2.6 TeV $\tilde{g}\tilde{g}, \, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ 15 27 5.7 TeV $m(\tilde{\chi}_1^0)=0$ HELHS $m(\tilde{g}) \sim m(\tilde{\chi}_1^0) + 10 \text{ GeV}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ 15 27 2.6 TeV NUHM2, $\tilde{g} \rightarrow t\tilde{t}$ $m(\tilde{\chi}_1^0)=0$ 15 27 5.9 TeV $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ 17.0 TeV $m(\tilde{\chi}_1^0)=0$ 30 100 FCC-hh $\tilde{g}\tilde{g}, \, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ $m(\tilde{g}) \sim m(\tilde{\chi}_1^0) + 10 \text{ GeV (*)}$ 30 100 7.5 TeV $\tilde{g}\tilde{g}, \, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$ $m(\tilde{\chi}_1^0)=0$ 30 100 11.0 TeV $m(\tilde{\chi}_1^0) = 0 \ (**)$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ 15 37.5 7.4 TeV LE-FCC $m(\tilde{g}) \sim m(\tilde{\chi}_1^0) + 10 \text{ GeV (**)}$ $\tilde{g}\tilde{g}, \, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ 15 37.5 3.6 TeV $\tilde{g}\tilde{g}, \, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$ $m(\tilde{\chi}_1^0) = 0$ (*) 15 37.5 7.6.TeV 10 Mass scale [TeV]

Fig. 8.6: Gluino exclusion reach of different hadron colliders: HL- and HE-LHC [443], and FCC-hh [139, 448]. Results for low-energy FCC-hh are obtained with a simple extrapolation.

(*): extrapolated from HL- or HE-LHC studies (**): extrapolated from FCC-hh prospects

EU Strategy-SUSY: ~q

All Colliders: squark projections

(R-parity conserving SUSY, prompt searches)

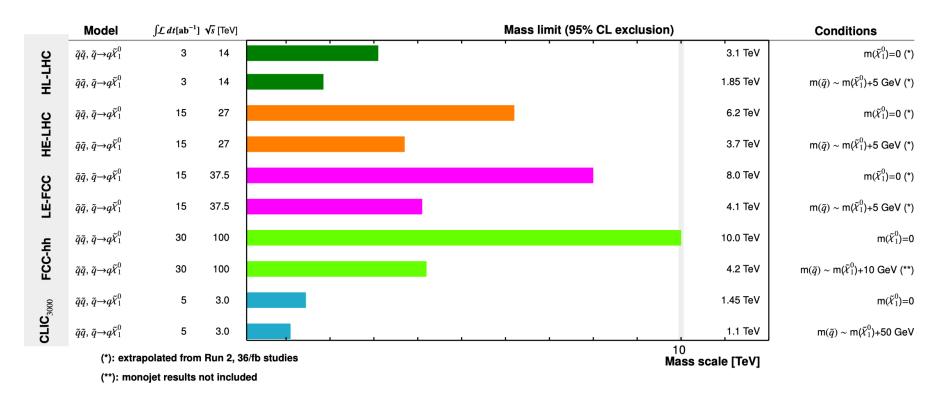
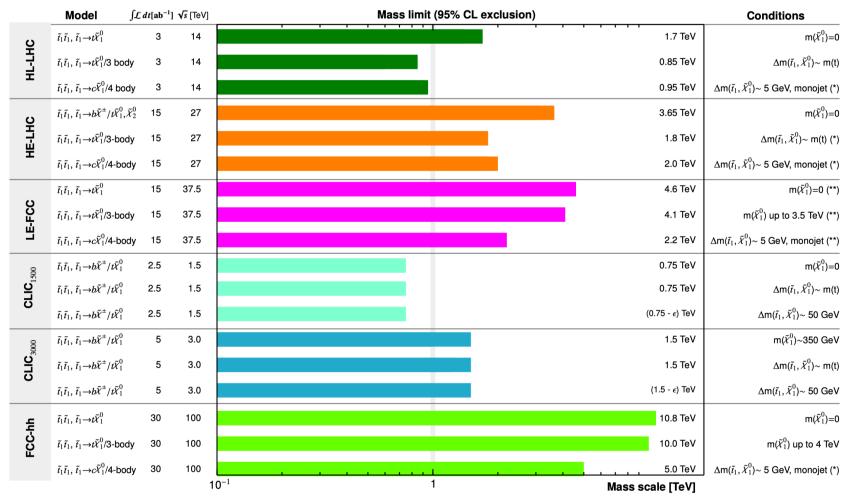


Fig. 8.7: Exclusion reach of different hadron and lepton colliders for first- and second-generation squarks.



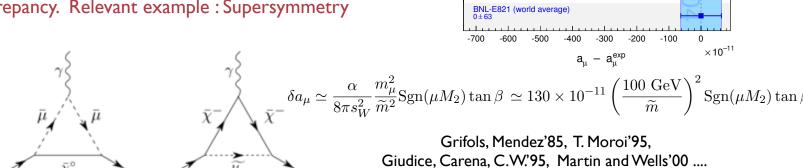
EU Strategy-SUSY: ~t

All Colliders: Top squark projections

(R-parity conserving SUSY, prompt searches)

^(*) indicates projection of existing experimental searches

^(**) extrapolated from FCC-hh prospects


https://indico.cern.ch/event/687651/contributions/3400865/attachments/1850992/3038683/Wagner-LHCP2019.pdf

Muon Anomalous Magnetic Moment

Present status: Discrepancy between Theory and Experiment at more than three Standard Deviation level

$$\delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{theory}} = 268(63)(43) \times 10^{-11}$$

3.6 σ Discrepancy

New Physics at the Weak scale can fix this discrepancy. Relevant example: Supersymmetry

HMNT 07 (e⁺e⁻-based) -285 ± 51

Davier et al. 09/1 (τ-based)

Davier et al. 09/2 (e⁺e⁻ w/ BABAF

HLMNT 10 (e⁺e⁻ w/ BABAR)

DHMZ 10 (e⁺e⁻ newest)

JN 09 (e⁺e⁻) -299 ± 65

Here \tilde{m} represents the weakly interacting supersymmetric particle masses.

For tan $\beta \simeq 10$ (50), values of $\tilde{m} \simeq 230$ (510) GeV would be preferred.

Masses of the order of the weak scale lead to a natural explanation of the observed anomaly!