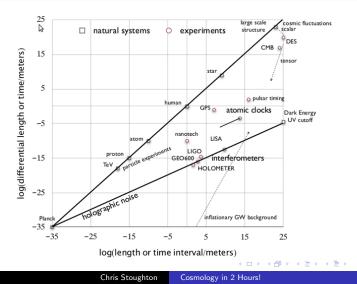


- From Stars to the Big Bang
- Precision Cosmology

5 Final Ideas

- ● ● ●


Background

æ

Background

From Stars to the Big Bang Precision Cosmology Final Ideas

Length Scales

æ

Wonder

For it is through wondering that human-beings both now and at first began to philosophize, wondering first about the strange things close at hand, and then little by little in this way devotedly exerting themselves and coming to impasses about greater things, such as about the attributes of the moon and things pertaining to the sun and the stars and the coming-into-being of the whole. (Aristotle, Metaphysics, I.2, 982b11-17)

We "know" that the Earth is Round

THEORY

Aristotle Every portion of the Earth tends toward the center until by compression and convergence they form a sphere. (De caelo, 297a9-21) CIRCUMSTANTIAL EVIDENCE

Sailors see tops of mountains; mast disappears last Travelers see Sun and stars at different elevations Shadow of earth on moon during eclipse is round Eratosthenes measured circumference at Summer Solstice in 340 B.C. to $\sim 10\%$ Magellan et al. circumnavigation 1519-1522 DIRECT OBSERVATION NNHS you could repeat this NASA you'll need more funding for this.

Naperville North High School

Weather Balloon Launched to 100,000 ft

▲ 同 ▶ → 三 ▶

Apollo 17

December 7, 1972 <ロ> <同> <同> < 同> < 同> æ Chris Stoughton Cosmology in 2 Hours!

Limits

Physical Cosmology Is matter all that matters?

Observation <---> Model What if 2 models explain all observations?

Model *washing to pick the "best" interpretation?*

Not Fair Questions (but great questions for other discussions!)

- Why is there something rather than nothing?
- What is before the beginning?
- What is man and why is he here?

Godel's Incompleteness a theory cannot be both consistent and complete

 Wolpert applies this in "Physical limits of inference" (arXiv.0708.1362v2)

Perception your own observation Introspection perception with a special object Memory iirc Reason mathematics, geometry, logic Testimony because I said so!

Different criteria for justifying knowledge. Which ones are used in scientific methods?

Background Stars From Stars to the Big Bang

rom Stars to the Big Bang Precision Cosmology Final Ideas

Scientific Methods

(note the s) Observation \longleftrightarrow Model \longleftrightarrow Interpretation

- A good mathematical model uses a "few" parameters to describe "many" observations.
- We "know" this model is true.
- Gives us powers of prediction
- Allows us to manipulate matter to do wonderful things. (aka Technology or Engineering.)
- grow more and better food cheaper
- walk on the moon
- see inside your body without cutting you open
- Ο...
- make us more wealthy

- allows stable orbits
- always attracts
- explains the motion of apples, moons, and planets

BUT

- does not explain details of orbits (precession)
- mass bends light
- gravitational redshift

Model Infinite Static Universe, with uniform distribution of stars Predict What would the sky look like? Observe What does the sky look like?

< ∃ >

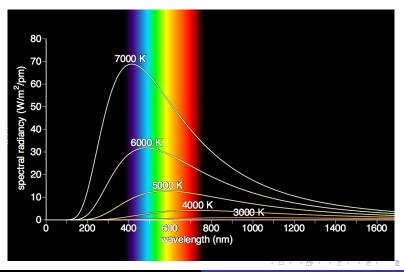
Stars

< ロ > < 団 > < 豆 > < 豆 > <</p>

æ

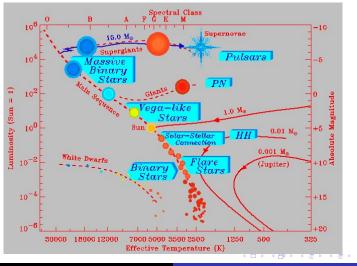
Solar Power

What is the source of the Sun's energy?

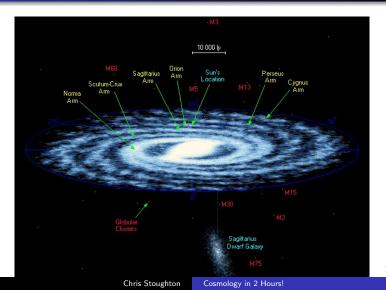

We need a "model" consistent with what we know about the Sun

•
$$M_{Sun}=2 imes 10^{33} grams$$

•
$$T_{Sun} > T_{Earth} > T_{Rocks} \sim 4 imes 10^9$$
 years


Model	Duration (years)
Chemical Burning	$6.3 imes 10^{3}$
Gravitational Potential Energy	
Fusion	$100 imes 10^9$ (simple estimate)

Stars and Black Body Radiation


Chris Stoughton Cosmology in 2 Hours

The Lives of Stars

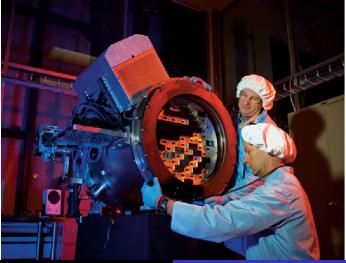
Chris Stoughton Cosmology in 2 Hours

A Map of the Milky Way

Looking Out from the Milky Way

Chris Stoughton

Cosmology in 2 Hours!


Stars Essentials for Cosmologists

- one number (T) describes overall color and lifetime
- heavy stars are hot and bright and burn out fast
- turn that around: given how bright a star is, we know the mass
- various things can make a star get brighter all of a sudden (nova); if a star is heavy enough, it ends with a bang (Super Nova); a star that is just under this mass can slowly siphon stuff from a neighbor. When it gets to the limit it is SNIa – all blow up with the same mass
- metals from previous generations "contaminate" the astmosphere giving absorption lines

From Stars to the Big Bang

æ

The Business End of Modern Cosmology Telescope

Chris Stoughton

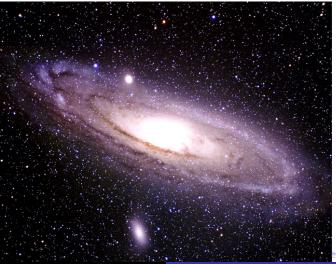
Cosmology in 2 Hours!

What else is out there?

Chris Stoughton

Cosmology in 2 Hours!

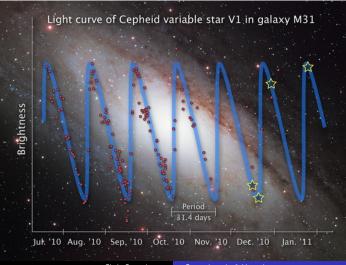
Nebulae


Thomas Wright in 1750 – An original theory or new hypothesis of the Universe: Milky Way is a flattened disk; nebulae are "outside".

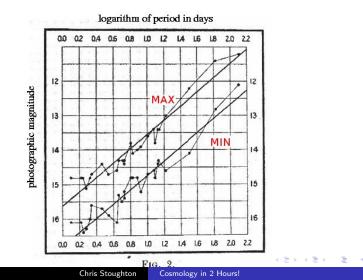
Immanuel Kant in 1755 -coined the term "Island Universes"

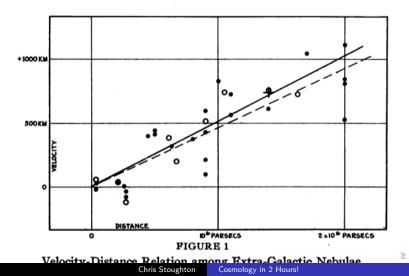
Vesto Slipher in 1912 – looking for signs of life in galaxy spectra, saw they were mostly receding, not gravitationaly bound to Milky Way.

Harlow Shapley and Heber Curtis in 1920 - the "Great Debate"


Andromeda Nebula – M31

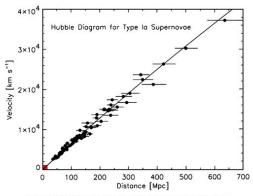
Andromeda Nebula – Hubble V1


Andromeda Nebula – Hubble V1


Chris Stoughton

Cosmology in 2 Hours!

Henrietta Leavitt - Cepheid Period/Luminosity



Hubble Diagram – Original

Hubble Diagram – Modern

Kirshner, Robert P. (2004) Proc. Natl. Acad. Sci. USA 101, 8-13

Chris Stoughton

PNAS

æ

Do we "know" the Universe is expaning?

It did not help adherents of the Big Bang that Gamow was its most vocal supporter. Or that Einstein, now living out his remaining years in Princeton as the world's most famous scientist, was still philosophically more comfortable with a static universe.

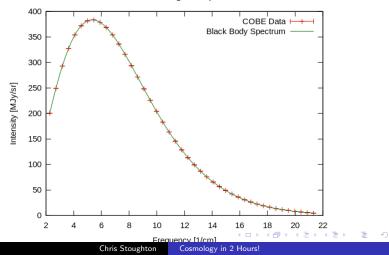
Or, most important, that [Ralph] Alpher and [Robert] Herman's prediction of the cosmic background radiation, which could not plausibly be accounted for in steady-state cosmology, had been all but forgotten during the 1950s. With problems on both sides, neither was a clear winner. This was how matters stood until the early spring of 1965, cosmology stalemated.

Do we "know" the Universe is expaning?

Had Arno Penzias and Robert Wilson known in 1964 of the prediction of Alpher and Herman sixteen years earlier, the two Bell scientists would have been spared a year's work trying to uncover the source of the noise in their horn antenna. Had [Robert] Dicke been aware of the prediction, he could have begun work on his own antenna years earlier without having to wait for Jim Peebles to do the theoretical calculations from scratch.

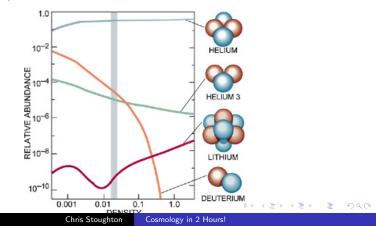
John C. Mather, John Boslough, The Very First Light, New York: Basic Books, 1996, pp. 49-50.

Penzias and Wilson - Cosmic Microwave Background



Chris Stoughton

Cosmology in 2 Hours!


COBE – measures 3 degree K

Cosmic Microwave Background Spectrum from COBE

BBN – Big Bang Nucleosynthesis

The fact that helium is nowhere seen to have an abundance below 23% mass is very strong evidence that the Univwerse went through an early hot phase.

- We "know" that the Universe is Expanding
- We'll talk about HOW it is expanding in the second half
- And what we are doing about it.

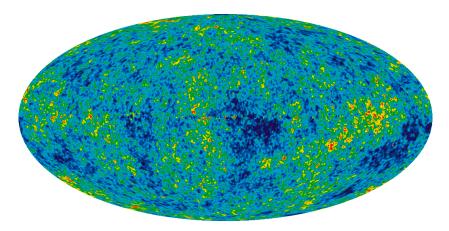
- **→** → **→**

<ロ> <部> < 2> < 2> < 2> < 2> < 2</p>

æ

Precision Cosmology

*ロ * * @ * * 注 * * 注 *


æ

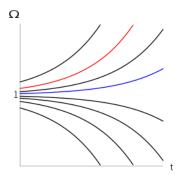
The Cosmological Principle

Homogenous the Universe is the same everywhere Isotropic the Universe looks the same in all directions

- We assume that the Universe is "playing fair" with us
- A stronger condtion would be to make it the same at all times
- We can test how "good" these assumptions are, but not completely

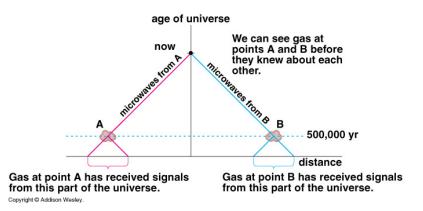
WMAP All Sky Temperature Map

Temperature range of +/- 200 micro Kelvin $_{{\scriptstyle <\, \rm o\, }}$, $_{{\scriptstyle <\, \rm o\, }}$

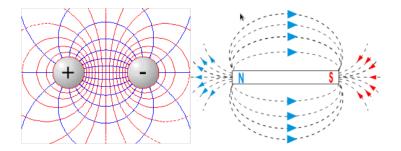

Problems with the Big Bang

Flatness if the density is \sim 1 now, it must have been really close to 1 early on

Horizon why is the Cosmic Microwave Backround so uniform? How does the left side know what the right side is doing?

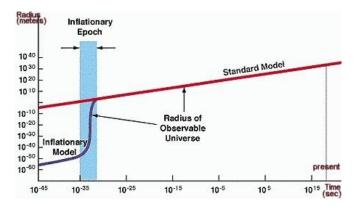

Magnetic Monopoles where are they?

The Flatness Problem


 $|\Omega - 1|$ is currently less than 0.01, and therefore must have been less than 1E-62 at the Planck era. This "fine tuning" makes cosmologists nervous.

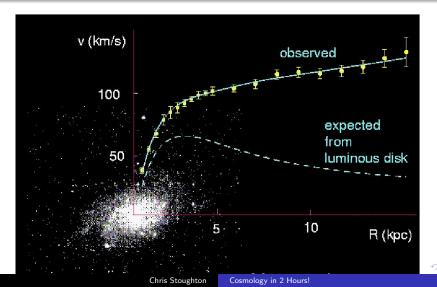
The Horizon Problem

< 1 →


The Magnetic Monopole Problem

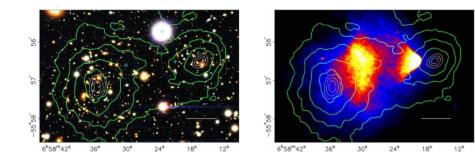
Grand Unified Theories (GUT) predict magnetic monopoles are a dominant part of the universe. BUT – we have not even seen one.

Cosmic Inflation


The "scalar field" of GUT (invented for particle physics) drives an exponential expansion.

Chris Stoughton Cosmology in 2 Hours!

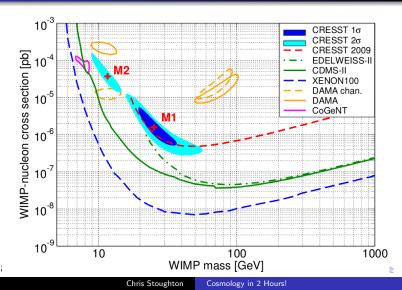
< (□)


Dark Matter – galaxy rotation curve

Dark Matter – strong gravitational lensing

Dark Matter – weak gravitational lensing

合 ▶ ◀


Dark Matter – direct detection of Particles

Chris Stoughton

Cosmology in 2 Hours!

Dark Matter - direct detection

Dark Matter – indirect detection

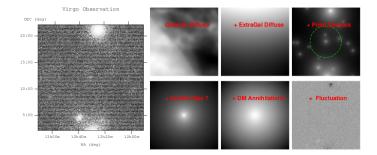
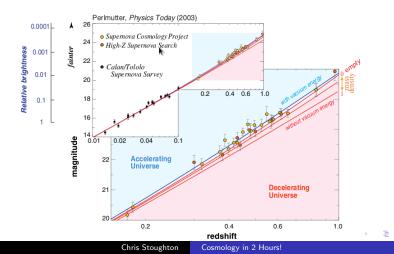
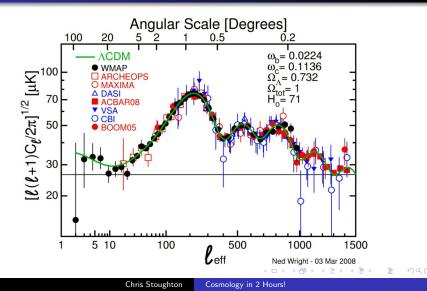
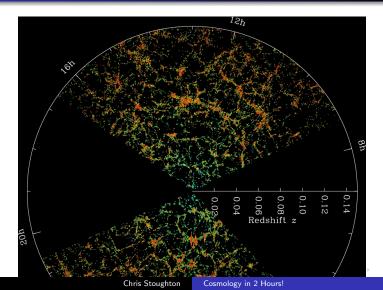
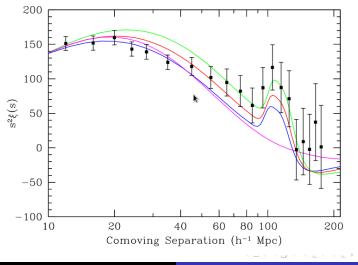



Fig. 1.— Decomposition of the Fermi-LAT image in the region of the Virgo cluster into model components. The observed photon count image from 100MeV to 100 GeV is shown on the left.

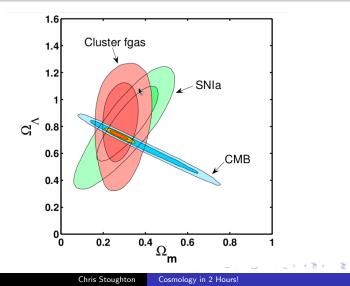

Mass of 20-60 GeV (annihilating into the b-bbar channel) consistent with Hooper et al. analysis of Galactic center.

Dark Energy – first detection


Type la Supernovae


Dark Energy – CMB Anisotropies

Dark Energy – Large Scale Structure



Dark Energy – Baryon Acoustic Oscillation

Chris Stoughton Cosmology in 2 Hours!

Dark Energy – Galaxy Clusters

Dark Energy – Weak Lensing

Lambda Cold Dark Matter Parameters

Parameter	Value	Description
t _o	$13.75\pm0.11 imes10^{9}\mathrm{years}$	Age of the universe
Ho	$70.4^{+1.3}_{-1.4}$ km s ⁻¹ Mpc ⁻¹	Hubble constant
$\Omega_b h^2$	0.0260 ± 0.00053	Physical baryon density
Ω _c h²	0.1123 ± 0.0035	Physical dark matter density
Ωb	0.0456 ± 0.0016	Baryon density
Ωc	0.227 ± 0.014	Dark matter density
Ω _Λ	$0.728^{+0.015}_{-0.016}$	Dark energy density
ΔR^2	$2.441^{+0.088}_{-0.092}\times10^{-9}\text{, }\text{k}_{\text{0}}\text{ = 0.002}\text{Mpc}^{-1}$	Curvature fluctuation amplitude
σ8	0.809 ± 0.024	Fluctuation amplitude at 8h ⁻¹ Mpc
ns	0.963 ± 0.012	Scalar spectral index
Z*	$1090.89_{-0.69}^{+0.68}$	Redshift at decoupling
t*	377730^{+3205}_{-3200} years	Age at decoupling
τ	0.087 ± 0.014	Reionization optical depth
Zreion	10.4 ± 1.2	Redshift of reionization

э

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

We "know" Lambda Cold Dark Matter Describes the Universe

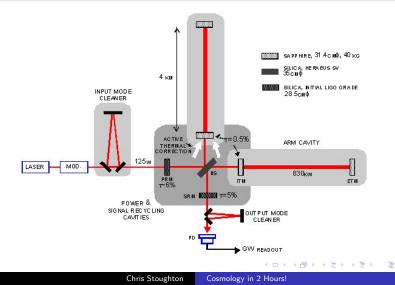
- a few parameters describe many different observations
- there are alternate ways to account for some of the observations
- are the parameters constant in time?
- it sure would be nice to have a direct detection of dark matter
- laboratory tests of dark energy? We can't think of any.

Final Ideas

*ロ * * @ * * 注 * * 注 *

æ

Black Holes


- M is contained inside $r_{sh} = \frac{2GM}{c^2}$
- light black holes evaporate
- not directly observed, but we see effects
 - rotation of stars near center of Milky Way
 - X-rays from binary systems
 - Quasars/Active Galactic Nuclei/Galaxies
- Entropy $S = \frac{\pi A k c^3}{2 h G}$ where A is surface area. Normally, S is proportional to Volume \sim information content.
- Leads to "holographic principle" that everything in a volume of spacetime can be written on the surface. (A hologram is a 2d "projection" of 3d space)

Gravitational Waves

Predicted by General Relativity. Sources include

- black hole/neutron star pair inspiraling
- black hole/neutron star near miss
- black hole mergers
- supernovae
- gamma ray bursts
- spinning neutron stars
- relics from inflation
- the unexpected

Advanced LIGO – gravitational wave detector

More Future Projects

The Fermilab Holometer will measure "pixel size" of spacetime Dark Energy Survey will use the 4 methods to measure dark energy Large Synoptic Survey Telescope will repeat the 5-year SDSS every few weeks! CMBPOL proposed to measure CMB with higher sensitivity Square Kilometer Array surveys the radio sky – for example Hydrogen maps using the 21cm wavelength radiation TNGI the Next Great Idea....