Quantum Mechanics
Saturday Morning Physics

Patrick Fox
2= Fermilab




“Actually I started out in quantum mechanics, but
somewhere along the way I took a wrong turn.”




Please, please ask
questions

o Y




My (our?) Challenge

We live in a “classical”’ world

Our everyday experiences are those of Newton, not

Einstein (relativity) or Schrodinger (QM)

Nothing prepares you for the weirdness of quantum

mechanics
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across quantum theory cannot possibly have understood
it.

--Niels Bohr

Friday, 10 February 2012



My (our?) Challenge

For those who are not shocked when they first come
across quantum theory cannot possibly have understood
it.

--Niels Bohr™

Friday, 10 February 2012



My (our?) Challenge

For those who are not shocked when they first come
across quantum theory cannot possibly have understood
it.

--Niels Bohr™

If you are not completely confused by quantum
mechanics, you do not understand it.

-- John Wheeler

Friday, 10 February 2012



My (our?) Challenge

For those who are not shocked when they first come
across quantum theory cannot possibly have understood
it.

--Niels Bohr™

If you are not completely confused by quantum

mechanics, you do not understand it.
-- John Wheeler

| think | can safely say that nobody understands quantum
mechanics.
-- Richard Feynman

Friday, 10 February 2012



My (our?) Challenge

For those who are not shocked when they first come
across quantum theory cannot possibly have understood
it.

--Niels Bohr™

If you are not completely confused by quantum

mechanics, you do not understand it.
-- John Wheeler

| think | can safely say that nobody understands quantum
mechanics.
-- Richard Feynman™

Friday, 10 February 2012



My (our?) Challenge

How did we discover it!
What is it!?
How do we know it is true!?
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Classical Physics

Explains all of physics up to ~1900

Deterministic
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The beginning of the end of classical physics
Black Body spectrum

Planck’s law
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Light can only be emitted and absorbed in
discrete units of energy, QUANTA
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The beginning of the end of classical physics
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Plancld’s constant

Light of frequency 1/ can only be emitted and absorbed in
units (quanta) of hv

E = hv
h = 6.626068 x 10 °*m?kg/s = 6.626068 x 10~ >*Js

A new fundamental constant of nature: Planclk’s constant
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Why it took so long to notice quanta

How many quanta of light are emitted from the light bulb
above us?

E = hv

h = 6.626068 x 107 °*kgm? /s = 6.62608 x 107 °*Js

3

Friday, 10 February 2012



Why it took so long to notice quanta

How many quanta of light are emitted from the light bulb
above us?

E = hv
h = 6.626068 x 107 °*kgm? /s = 6.62608 x 107 °*Js

c 3 x10°m/s ”
c_ 5% 104 H
)\ 600nm ” ?

/) —

3

Friday, 10 February 2012



Why it took so long to notice quanta

How many quanta of light are emitted from the light bulb
above us?

E = hv
h = 6.626068 x 107 °*kgm? /s = 6.62608 x 107 °*Js

c 3 x10°m/s ”
c_ 5% 104 H
)\ 600nm ” ?

/) —

A

E, = (6.6 x 107%*J5)(5 x 10'*s71) =3.3 x 10719J

Friday, 10 February 2012



Why it took so long to notice quanta

How many quanta of light are emitted from the light bulb
above us?

E = hv
h = 6.626068 x 107 °*kgm? /s = 6.62608 x 107 °*Js

¢ 3x10°m/s

— 2= =5 x 10"*H
TN T 600nm : :
A\
E, = (6.6 x 107%*J5)(5 x 10'*s71) =3.3 x 10719J
N:100J/S_ 100J /s %3><1020/S!!!

E,  33x10719J
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The end of classical physics

Photoelectric effect

igh intensity source A Q/A&"
Heinrich Hertz Wi R A Millikan

low Intensity source

current

Viweshoy Y T

| .Metals emit electrons
when irradiated

2.Threshold, depends on 4.Energy «frequency
frequency

3.Current «intensity
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The end of classical physics

igh intensity source ol e W
Heinrich Hertz * R A Millikan
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current
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3.Current «intensity

4.Energy =« frequency
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The end of classical physics

high intensity source ol @
Heinrich Hertz R A Millikan
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The end of classical physics

high intensity source ol @
Heinrich Hertz R A Millikan

low intensity source

current

Photons as waves cannot explain this!
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The end of classical physics

Albert Einstein

VA

0|

Light behaves as if it is discrete
bundles of energy (photons) of
energy hu

1
) —mv® =hv — W
gradient = = i
/ Explains photoelectric
/
s o effect
——r v . . .
5. » Light is a particle!
//
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The end of classical physics

Albert Einstein

VA

0|

Light behaves as if it is discrete
bundles of energy (photons) of
energy hu

1
) —mv® =hv — W
gradient = = i
/ Explains photoelectric
/
s effect
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Wave-particle duality

If a wave can be a particle, can a
particle be a wave!

For light,

E hu

Louis de Broglie ™ pPp=—=—= —
° C C A

What is your de Broglie wavelength!?
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Wave-particle duality

If a wave can be a particle, can a
particle be a wave!

What is your de Broglie wavelength!?
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Wave-particle duality

If a wave can be a particle, can a
particle be a wave!

What is your de Broglie wavelength!?

10~ °%m proton is about

10~ m
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The double slit experiment

lli

Classical particles, e.g. Waves, e.g. on water
bullets surface
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The double slit experiment

lli

Classical particles, e.g. Waves, e.g. on water
bullets surface

Interference
pattern
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The double slit experiment

Repeat with electrons

Interference pattern!
Waves of what!?
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(c) 1989 Hitachi, Ltd, All rights reserved,
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Gedanken vs real experiments

Interference occurs if wavelength ~ slit separation

de Broglie wavelength for an electron at 60 km/s is
comparable to the atomic spacing in a metal
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The quantum mechanics wave function

W(x,t

The probability for a particle to be at a point (x,t) is
W (z,1)[7

Quantum mechanics is a probabilistic theory
Evolution Is deterministic but predictions are only
statistical
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The Schrodinger equation

There is an equation that
governs the evolution of
the wavefunction

Erwin schrédinger-’w Can .only ask guestlons
like: what is the

probability of seeing X!

ip2elet) — O |y (g)(a, t)

Ot 2m  Ox?
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Particle trapped in a box

Lyry( )12
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X = 'ﬁ X = | «- . .
i R Infinite-well probability
Infinite-well wave functions. densities,
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In a classical worild you wouldn’t be here!

Unstable!

Neils Bohr

The Bohr atom, with quantum mechanics is stable
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Electrons as standing waves

.............

.............................

Angular momentum is quantized

Lowest orbital has L=1, no where to decay to
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Electrons as standing waves

...............................

...............

...............

Angular momentum is quantized
Lowest orbital has L=1, no where to decay to

Atoms are stable
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The Bohr Atom

A== Light emitted/absorbed at fixed

b= frequencies

n=1 "ﬁ.\/\/\/\—>

.+Ze AE = hv
Continuous Spectrum
Emission Lines
1)~ 12 12 Absorption Lines
ny |
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Heisenberg Uncertainty relation

h
Ap > —

“The more precisely the position is
determined, the less precisely the
momentum is known in this instant,
and vice versa.”’

% ArAp > 3

Werner Heisenberg

The act of measurement disturbs the system
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Measuring a particle’s position

Use a “microscope” - shine light on an electron

Shorter wavelength means better precision Ax ~ A

Compton scattering

p~h/\

’
y
RSP
e_
e-
’

VvV <V
Electron 1s initially at rest

€- gains energy
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Measuring a particle’s position

Use a “microscope” - shine light on an electron

Shorter wavelength means better precision Ax ~ A

Compton scattering

~ h/\ B
el ArAp > 5

V
V /
e-

e..
Similar argument for

/
¥ =y Young’s double slit

Electron 1s initially at rest
€- gains energy
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a
Monitor two slits, need Az < —

2
h
But then Ap > —
a
The fractional change in
electrons momentum
parallel to screen is 2P - A /a\/
D a

Smears out
interference pattern!
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Monitor two slits, need Az < —

But then Ap > h

a

The fractional change in

electrons momentum
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p
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Quantum tunneling

In QM the classically impossible is now just very unlikely

" X Uncertainty principle
E  means it can be outside
well

Alpha Particle
N *

N
N

.

Hucleer  Digtances From Center of lNudeus
Sufoce
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Quantum tunneling
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Quantum tunneling

In QM the classically impossible is now just very unlikely

~ X Uncertainty principle
E  means it can be outside
well

- o 0.0
negy .
& Apha Particle
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Superpositions
V=) v
?

Wavefunction is a superposition of all possibilities

QM predicts outcomes if expt. is repeated many times
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Schrodinger’s cat

Copenhagen interpretation of QM

Catisina
superposition of alive

D-_" b -{ -
. ° witys S ,'-). ”::.:‘..:_.-:‘ L ?":1
and dead until box is Y R 7
. : A _—

opened!
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Schrodinger’s cat

Copenhagen interpretation of QM

Catisina Y
superposition of alive |
and dead until box is % = 5
opene a: 4 . ﬁw‘“?;‘i; \‘*‘*w

“Shut up and calculate”
--Richard Feynman™
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Applications of Quantum Mechanics

The birth of QM in the early 1900’s lead to a profound
change in our understanding of nature at short distances

Without this understanding we would not have transistors
(and all semi-conductors), lasers, medical imaging
technology, superconductors,....Fermilab!

Quantum Mechanics is not the final story.....
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The loss of empty space

Paul A.M. Dirac
Dirac combined relativity and QM

Predicted antiparticles
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Quantum Electrodynamics (QED)

Feynman diagrams Richard Feynmaﬁ;’

Describes physics at short distances, and high energies

Like at Fermilab
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Are there new laws governing nature
at even shorter distances!
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