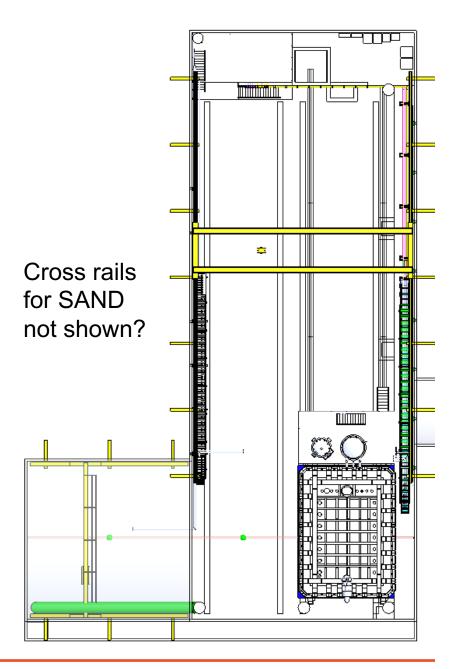
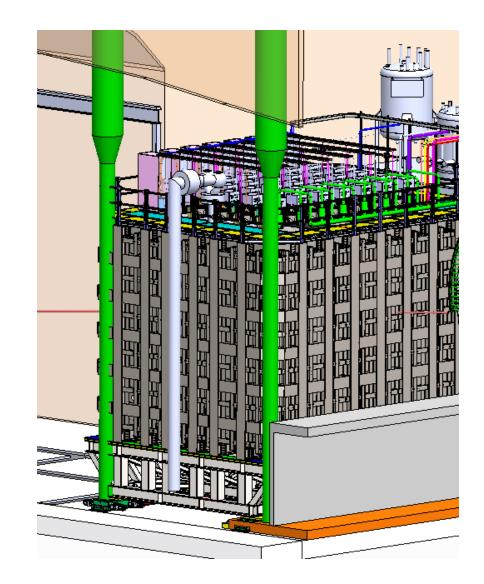
DUNE-PRISM Interfaces

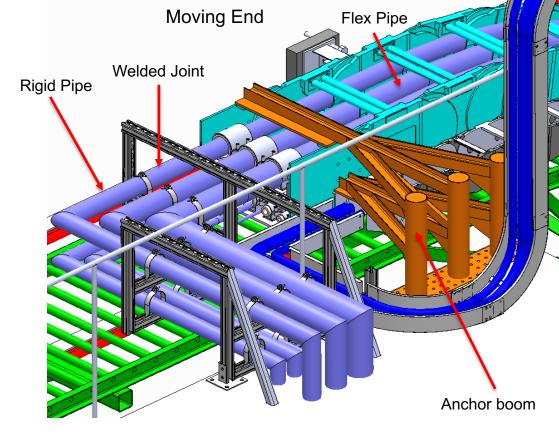

Mike Wilking

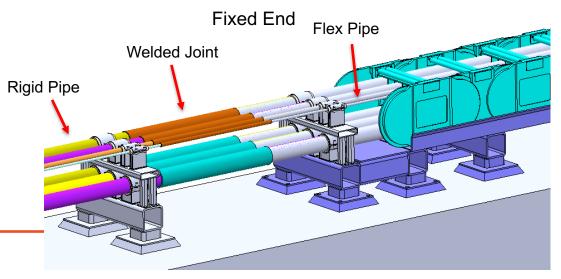
11 Nov 2020

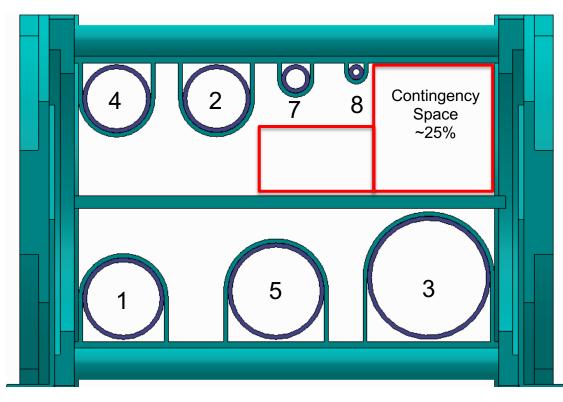
Rails


- All rails are in PRISM scope
- Interface to I&I (or ND conventional facilities)
- "Hilman epoxy grout" is currently in PRISM drill down, but nothing else to secure rails to the floor
 - Who is responsible for purchasing and installing anchor bolts?
- No interfaces between rails and detectors

Rollers


- Hilman rollers interface with both TMS and ND-LAr detector platforms
 - Platforms must conform to the specified roller spacing
- Who owns that ND-LAR platform? I&I? ND-LAR? "Cryostat"?




Energy Chains

- 4 total: power & utilities (e.g. cryo) to both TMS and ND-LAr
 - All include interfaces to I&I for securing the energy chains to the cavern
- ND-LAr utilities
 - Interface to cryo: they supply lines, and handle connections at both ends of the energy chain (including on top of ND-LAr)
 - Interface to ND-LAr to secure energy chain to detector (e.g. anchor boom)
- ND-LAr power
 - Interface to ND-LAr: includes power supply and data connection for all systems connected to ND-LAr (incl. cryo, PRISM, DAQ)
 - Interface to I&I: routing of cables after they leave the energy chain
 - Is I&I responsible for providing power and data cables?
- TMS power (same as ND-LAr power, but for TMS)
 - Interfaces to TMS and I&I
- TMS utilities
 - Interfaces to TMS and I&I (although I have not seen details of the utilities required for the TMS)

ND-LAr Utiliities Energy Chain

Model: IGUS E4-350-500 Internal Width: 350mm Internal Height: 500mm Weight: 65.7 kg/m

Name	Function	Line External Diameter	Manufacturer /Model	Mass per unit length	Max Pressure	Max Manuf. Length	Comment
1	LAr line - 2" – 10 barg (flexible VJP)	Ø 98.2 mm (DN80/40)		7,0 kg/m	20 barg		
2	LN2 line - 2" – 10 barg (flexible VJP)	Ø 81.4 mm (DN65/32)	Nexans HIGHFLEX	5,3 kg/m	10 barg	25m	
3	GN2 exhaust 2 ½" - 1barg (flexible VJP)	Ø 148.2 mm (DN125/65)		9,0 kg/m	10 barg		
4	GAr supply – 2" – 10barg	Ø 82 mm	Witzenmann	1.67 kg/m	30 barg	100 m	
5	GAr exhaust - 4″ - 1 barg	Ø 116 mm	HYDRA RS330	2.5 kg/m	10 barg	20 m	
6	Cryostat Relief Exhaust 12" 0.8 barg	Ø 340 mm	Witzenmann HYDRA RS430	23 kg/m	4 barg	3 m	Removed.
7	Instrument Air - 1" - 10 barg	Ø 34 mm	Witzenmann	0.79 kg/m	65 barg	100 m	
8	GN2 - ½" - 10 barg	Ø 18 mm	HYDRA RS330	0.25 kg/m	75 barg	100 m	Supply of insulation purge gas
9	Cryogenics LV, UPS and Network by I&I	n/a	Configuration and installation by I&I				

Table 1. Energy chain piping list, preliminary design rough order of magnitude dimensions.

(20% spare required at preliminary design stage)

EDMS: 2385478

Flevible

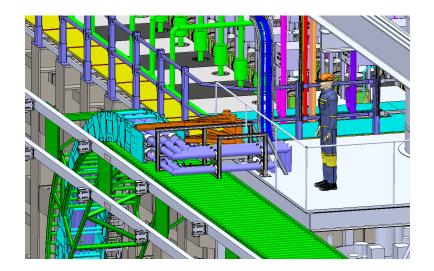
Page: 6 of 17

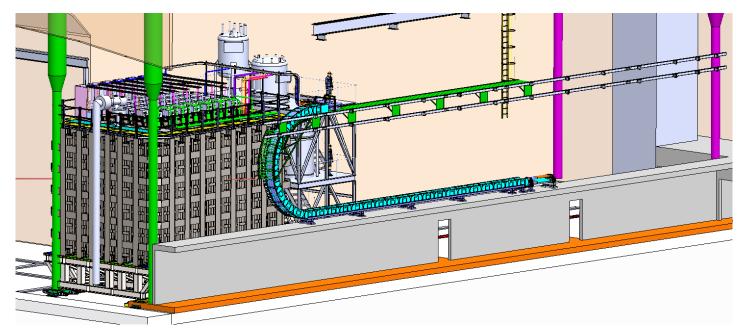
*Final sizing and layout of lines TBD

The only interface is to cryo?

Additional Interfaces

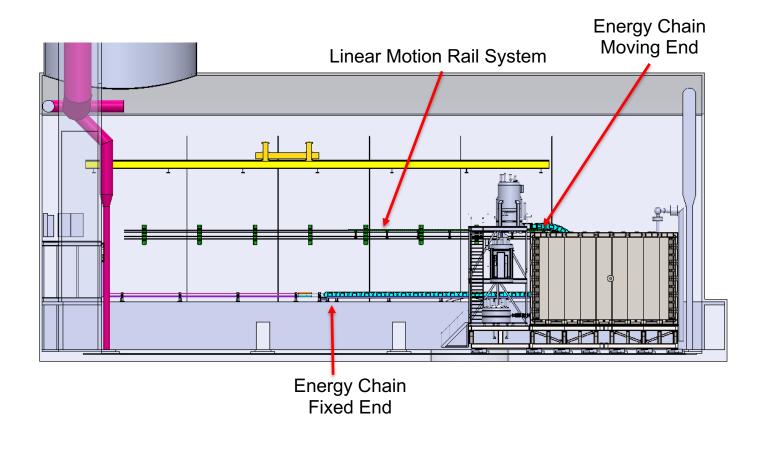
- Interfaces to ND-LAr
 - PRISM control box must be mounted somewhere on the detector
 - Power and data cabling must be provided by ND-LAr for control box and for the rollers
 - The laser positioning system and accelerometer/vibration monitors bust be mounted to ND-LAr
 - Power and data cabling must be provided by ND-LAr to monitoring systems (laser positioning, accelerometers / vibration monitors)
- Interfaces to TMS
 - Same as for ND-LAr (but for TMS)

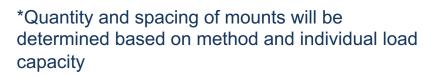

Backup (from talk by Andrew Lawrence)

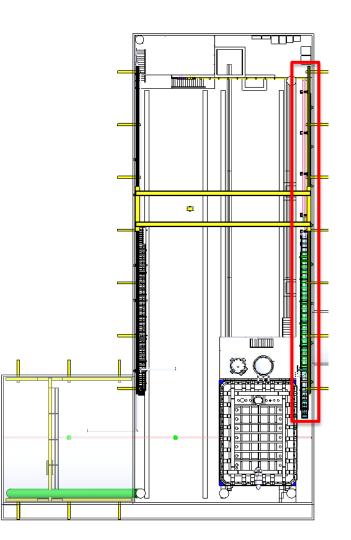


LAr Energy Chain Overview

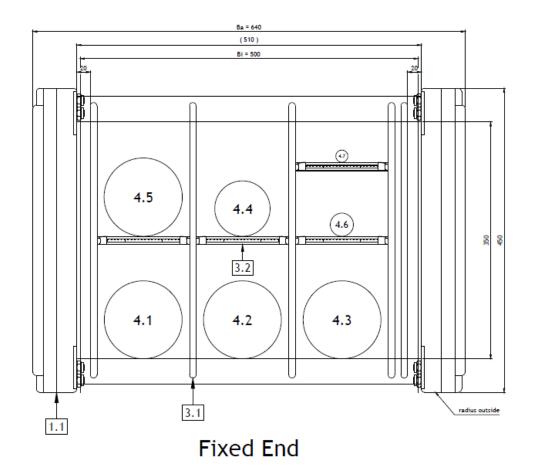
Two parallel chains will deliver utilities along stride of PRISM System


- -LAr Cryogen Supply Chain
- -Power Supply/Controls/Data Chain
- -Linear Motion Support Conveyor
- -PRISM Anchor via Cryogen Mezzanine





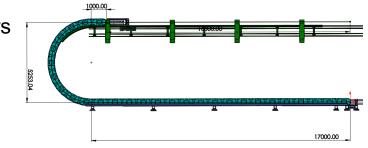
Energy Chain Interface with Cavern



Fermilab DU(NE)

2020/12/11

Igus Shelving and Proposed Pipe Layout



	E-Chai	in Data			
E-Chain Part Numb	er (ITEM 1.1):	E4.3	50.500.2000.	0	
Lowered Mounting	Height:				
LMH DWG:	-	Links to Flip: -			
Moving End Bracket	, ,	_	4.350100.1	****	
Fixed End Bracket (,	E4.350100.2			
Tiewrap (ITEM 2.3): Bracket Configurat		QTY (PCS)	•		
E-Chain Length wi	thout MB:	25850 mm			
Quantity of Regula	ır Links:	55	pitch:	0 mm	
Interior Sepa	aration in Every:	2nd	Link		
***************************************	Starting on the:	1st	Link		
ltem	Part Number	QTY/Link	Total		
3.1	E4.351.1F	4	108		
3.2	450.13	4	108		
	Project Tec	hnical Da	ta		
Travel Length:			31.60 m		
Speed:		0.05 m/s			
Acceleration:		0.10 m/s ²			
Deceleration:		anona kana kana kananakana kana	0.10 m/s ²		
Application Type:					
Operational Area /	Environment				
Country / Place:			-		
Temperature: (·	-°C +°C):	-	-		
Humidity (%):	-°C +°C):	-			
Humidity (%): Wind Speed:		-	-		
Humidity (%): Wind Speed: In Operation	n:		-		
Humidity (%): Wind Speed:	n:				

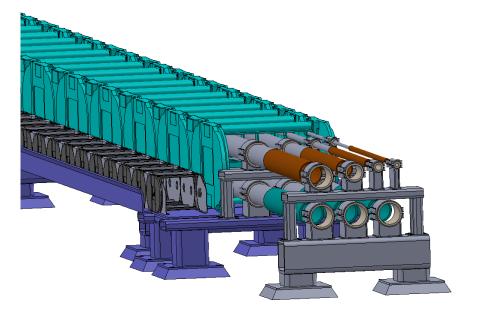
Cryogenic Energy Chain Load Values

Length of energy chain: 26.25 meters -16 m for necessary travel -8.25 m in energy chain bend -1 m relief at both ends

Line	Volume (m3)	Material Density kg/m	Material Mass kg	Pipe Weight kg	Total Weight kg
L. Argon	0.05321	1430	76.08685	105	181.1
L. Nitrogen	0.05321	804	42.77890	105	147.8
G. Nitrogen	0.08314	1.2	0.09976	105	105.1
G. Argon supply	0.05321	17.8	0.94709	43.8375	44.8
G. Argon exhaust	0.21283	1.65	0.35117	65.625	66.0
Instrument Air	0.01330	1.23	0.01636	20.7375	20.8
G. Nitrogen (purge gas)	0.00333	12.4	0.04124	6.5625	6.6
Total					572.1

Weight of Energy Chain

Cryogenic Piping(filled): 572.1 kg

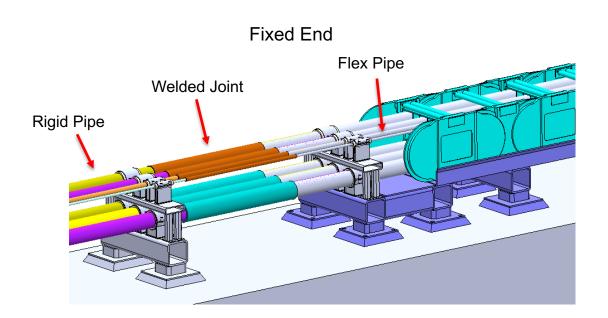

Igus Chain(65.7kg/m): 1,724.6 kg

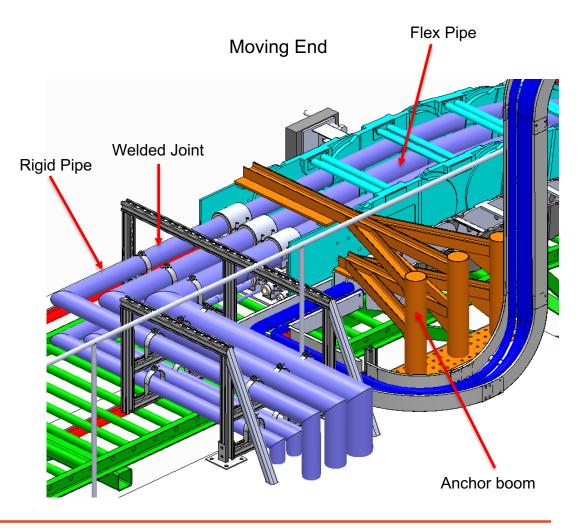
Total Weight: 2,296.7 kg

Power Supply Energy Chain

IGUS chain model for power and data

- Inner Height: 162mm
- Inner Width: 200mm

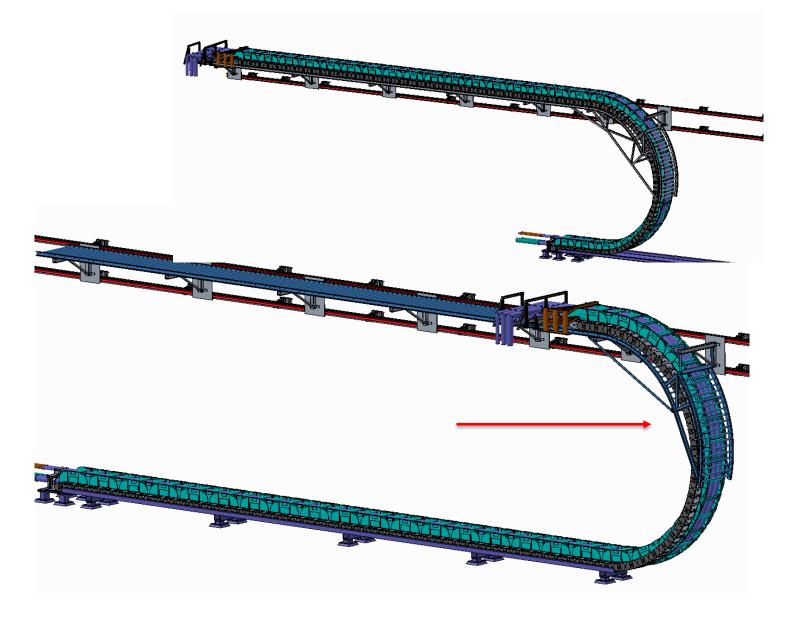

*chain selection to chain per volume requirements



End Connections

Rigid piping from cyroplant and surface transfer lines will connect via welded connections

90 degree turn at end of chain to mate with LAr cryogenic mezzanine



Conveyor Shelf

Energy chain traveling support needs to return with energy chain

Can this be accomplished without another powered motion system?

Added a concentric conveyor to guide travel support back to starting position

Commercially Available Conveyor

Model RS19U/G-31-6, 10'

Rollers Max Load: 8,757kg

15m(49.21ft) of straight conveyor results in 99 rollers

99x195lb= 19,305lb (8,757kg) max load

Frame max load:

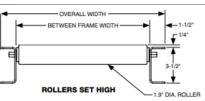
- 10ft separated supports: 49.21ft x 120lb/ft = 5,905lb(2,678kg)
- 5ft separated supports: 49.21ft x 660lb/ft = 32,478lb(14,732kg)

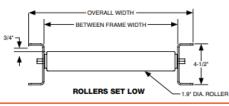
*We will have to fabricate custom transfer module at end

Working with custom conveyor vendor CSE for a custom conveyor with wall-mounted rollers

GRAVITY ROLLER CONVEYOR (1.9 in. dia. x 16 ga. rollers)

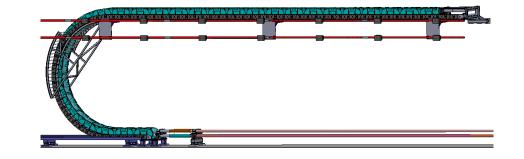
Gravity roller conveyor is ideal for conveying light or medium weight packages. They are useful for assembly, warehousing, or shipping applications.


- 12 widths
- 4 roller centers
 Powder coated steel frames



BETWEEN	OVERALL WIDTH	MOD		WT. (LBS.)		
FRAME		1.9" X	ROLLER CENTERS			
WIDTH		UNPLATED	GALVANIZED	CENTENS	5'	10'
	34*	RS19U-31-2.25	RS19G-31-2.25	2 1/4*	169	340
045		RS19U-31-3	RS19G-31-3	3*	146	278
31"		RS19U-31-4.5	RS19G-31-4.5	4 1/2*	112	214
		RS19U-31-6	RS19G-31-6	6*	97	179

FRA	ME CAPACITY	ROLLER CAPACITY			
SUPPORT	MAX. DISTRIBUTED LIVE LOAD	BETWEEN FRAMES	MAX. STATIC LOAD PER ROLLER (LBS.)		
CENTERS	PER FOOT (LBS.)		1.9 X 16 GA.	1.9 x 9 GA.	
5'	660	13"-29"	265	290	
10'	120	31"-45"	195	165	
		47"-60"	100	80	



Wall Mounting of Chain Support Conveyor

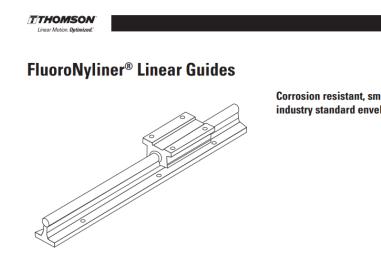
Travel support conveyor needs linear motion system to span travel distance of cryostat

Load Breakdown on linear motion system

Energy Chains:	~2,405 kg				
Cryogenic Chain w/ VJP's, 24.55m at max travel (16.3m on conveyor, 8.25m in bend): ~2,148 kg					
Power Supply Chain: 24.55m at max (10.45kg/m)	~257 kg				
Travel Support Conveyor:	~1,085 kg				
Conveyor: 987 kg					
Support Shelves: 97.12 kg , 12.14 kg per unit					

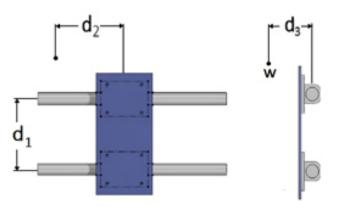
Load on linear bearings(max):

~3,490 kg

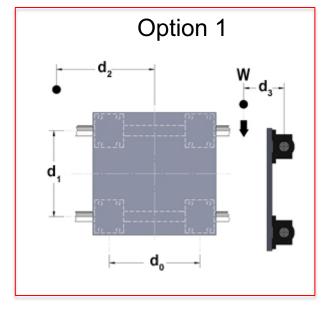


Linear Bearing Selection

Introduced Thomson linear bearings into model.


Two preferred options given for layout:

2 or 4 bearing per mounting pad



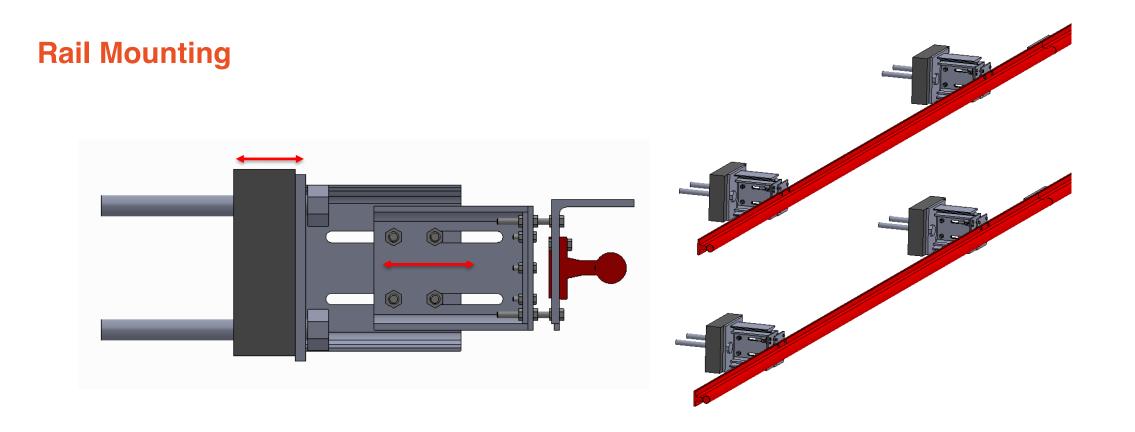
Corrosion resistant, smooth, quiet, industry standard envelope

Conveyor Support

Specs:

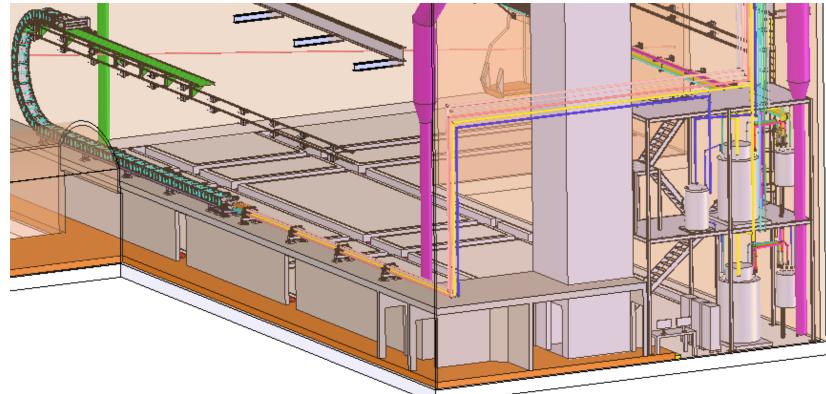

Rail Diameter: 1.5 inch

Bearing Max Load(per): 7000 lbf, or 3175kg


Max Load per support unit: 12,700 kg

3+ support units mounted along conveyor

Total bearing max load capacity: 38,100 kg



Slotted beam mounted to grout pad/shotcrete surface

3" slot + grout pad thickness (0 to 3+ inches) can overcome 6"+ variability in cavern wall surface.

Cryogen Pipe Routing in Cavern

Preliminary routing along rear wall of cavern and down to egress surface.

Concerns: Equipment placement along desired path, Interference with current ventilation model and power distribution equipment

