

# Overview

Tetsuro Sekiguchi (KEK, IPNS)

On behalf of the EMPHATIC Collaboration

January 22, 2021

### **DUNE Flux Uncertainties**



- Dominant flux uncertainties come from 40% cross-section uncertainties on interactions in the target and horns that have never been measured (or have large uncertainties/spread)
- Lack of proton and pion scattering data at lower beam energies (e.g. <10 GeV/c) that NA61 has access to
- Reduction of flux uncertainties improves physics reach of most DUNE near detector analyses. New hadron production measurements support the DUNE oscillation program by increasing confidence in the a-priori flux and ND measurements

### Flux Uncertainties - Can we do better?

- Reasonable assumptions:
  - No improvement for π production where ~5% measurements already exist
  - 10% uncertainty for K absorption (currently 60-90% for p<4 GeV/c, 12% for p>4 GeV/c)
  - 10% on quasi-elastic interactions (down from 40%)
  - 10% on p,π,K + C [Fe,Al] → p + X (down from 40%)
  - 20% on p, $\pi$ ,K + C [Fe,Al]  $\rightarrow$  K<sup>±</sup> + X (down from 40%)





Note: flux uncertainties determined by EMPHATIC, not DUNE

### Flux Uncertainties - Can we do better?

- Reasonable assumptions:
  - No improvement for π production where ~5% measurements already exist
  - 10% uncertainty for K absorption (currently 60-90% for p<4 GeV/c, 12% for p>4 GeV/c)
  - 10% on quasi-elastic interactions (down from 40%)
  - 10% on p,π,K + C [Fe,Al] → p + X (down from 40%)
  - 20% on p, $\pi$ ,K + C [Fe,Al]  $\rightarrow$  K<sup>±</sup> + X (down from 40%)





Note: flux uncertainties determined by EMPHATIC, not DUNE

## **EMPHATIC**

- Experiment to Measure the Production of Hadrons At a Test beam In Chicagoland
  - Uses the Fermilab Test Beam Facility (FTBF)
  - Table-top size experiment focused on hadron production measurements with p<sub>beam</sub>
     < 15 GeV/c, but will also make measurements with beam from 20-120 GeV/c.</li>
  - We are aiming to reduce the hadron production uncertainties by a factor of two

#### Design concept:

- High-rate DAQ, precision tracking and timing
- Compact size reduces overall cost
- International collaboration from US, Japan, and Canada
  - Involvement of experts from NOvA/DUNE and T2K/Hyper-K
  - Critical detectors from Canada and Japan are funded and ready for Phase-1 run



## **EMPHATIC Measurement Plan**

| Phase                     | Date                | Sub-system                                                                                                                   | Momenta                            | Targets                                                                        | Goals                                                                         |
|---------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 1<br>(Engineering<br>run) | Fall 2021           | Beam Aerogel counter FTBF SSDs Small aperture magnet Small aperture A-RICH ToF counters Lead glass calorimeter               | 4, 8, 12, 20, 31,<br>60, 120 GeV/c | C, Al, Fe                                                                      | Low-acceptance<br>(150mrad) hadron<br>production with<br>PID up to 8 GeV      |
| 2                         | Spring/Fall<br>2022 | Beam Aerogel counter FTBF SSDs Large-area SSDs Full aperture magnet Full aperture A-RICH ToF counters Lead glass calorimeter | 4, 8, 12, 20, 31,<br>60, 120 GeV/c | C, Al, Fe,<br>H <sub>2</sub> O, Be,<br>B, BN,<br>B <sub>2</sub> O <sub>3</sub> | Full-acceptance (350mrad) hadron production with PID up to 8 GeV              |
| 3                         | 2023                | Same as Phase 2 +<br>Extended RICH                                                                                           | 20, 31, 60, 80,<br>120 GeV/c       | Same as<br>Phase 2 +<br>Ca, Hg, Ti                                             | Full-acceptance     (350mrad) hadron     production with     PID up to 15 GeV |
| 4                         | 2024                | 350 mrad acceptance<br>spectrometer                                                                                          | 120 GeV/c                          | Spare<br>NuMI<br>target and<br>horn                                            | Charged-particle<br>spectrum<br>downstream of horns                           |

downstream of horns

horn

## **EMPHATIC Measurement Plan**

| Was su                    | pposed              | to be Spring 2020, b                                                                                                         | out then CO                        | VID-19 h                                                                       | appened                                                                       |
|---------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 1<br>(Engineering<br>run) | Fall 2021           | Beam Aerogel counter FTBF SSDs Small aperture magnet Small aperture A-RICH ToF counters Lead glass calorimeter               | 4, 8, 12, 20, 31,<br>60, 120 GeV/c | C, Al, Fe                                                                      | Low-acceptance<br>(150mrad) hadron<br>production with<br>PID up to 8 GeV      |
| 2                         | Spring/Fall<br>2022 | Beam Aerogel counter FTBF SSDs Large-area SSDs Full aperture magnet Full aperture A-RICH ToF counters Lead glass calorimeter | 4, 8, 12, 20, 31,<br>60, 120 GeV/c | C, Al, Fe,<br>H <sub>2</sub> O, Be,<br>B, BN,<br>B <sub>2</sub> O <sub>3</sub> | Full-acceptance (350mrad) hadron production with PID up to 8 GeV              |
| 3                         | 2023                | Same as Phase 2 +<br>Extended RICH                                                                                           | 20, 31, 60, 80,<br>120 GeV/c       | Same as<br>Phase 2 +<br>Ca, Hg, Ti                                             | Full-acceptance     (350mrad) hadron     production with     PID up to 15 GeV |
| 4                         | 2024                | 350 mrad acceptance spectrometer                                                                                             | 120 GeV/c                          | Spare<br>NuMI<br>target and                                                    | Charged-particle spectrum downstream of horns                                 |

### **Beam Particle ID**



| Aorogol              | Particle             | Threshold |        |          | <b>N</b> <sub>p.e.</sub> |
|----------------------|----------------------|-----------|--------|----------|--------------------------|
| Aerogel              | (Equivalent)         | 0.5 p.e.  | 1 p.e. | 1.5 p.e. | (Average)                |
| 1.027 (60 mm thick)  | K (4 GeV/c)          | 99.3      | 99.2   | 99.1     | 30.7-34.4                |
| 1.007 (65 mm thick)  | K (8 GeV/c)          | 98.7      | 98.3   | 97.9     | 7.6–8.3                  |
| 1.007 (65 mm thick)  | π (4 GeV/ <i>c</i> ) | 98.9      | 98.5   | 98.1     | 9.6–10.6                 |
| 1.003 (160 mm thick) | K(12 GeV/c)          | 98.7      | 97.7   | 96.1     | 4.9-5.2                  |

#### Beam PID

- Gas Cherenkov detectors can be used for p>6 GeV/c
  - No p/K separation for p<18GeV/c</li>

#### • Beam aerogel counter

- Developed by Chiba Univ. (aerogel expert)
- Very low index (n=1.004) aerogel newly developed for FMPHATIC
  - Can cover up to 12 GeV/c

## **Permanent Magnet**

#### Dipole magnet made from segments of Neodymium permanent magnets





| Magnet type              | dipole      |
|--------------------------|-------------|
| Material                 | NdFeB (N52) |
| Total number of segments | 28          |
| Mass                     | ~104 kg     |

Small aperture magnet purchased by TRIUMF for 2020 run (150mrad coverage)







## Silicon Strip Detectors

#### Downstream of magnet



Upstream of magnet Existing FTBF SSDs (4cm x 4cm active area)



- Phase-1: upstream tracking can be done with existing FTBF SSDs
  - If we move to other location, other SSDs will be needed
- Phase-2: Large-area SSDs are needed
  - CMS (10x10cm²) / D0 (10x5cm²) sensors available from Fermilab SiDet facility.
  - Resolution good enough (122µm) for downstream tracking

### **Momentum Resolution**



- Tracking simulation using GEANT4
  - Preliminary study based on COMSOL magnetic field maps.
  - SSD resolution taken into account
- Momentum resolution < 6% below 15 GeV/c</li>
  - Resolution dominated by multiple scattering at low momentum

## **PID Detectors : Aerogel RICH**

#### **Large Acceptance Aerogel RICH**









- Proximity-focusing RICH based on Belle II ARICH detector
- Aerogels with lower indices of refraction (n=1.03-1.04) and good transmittance
- Light detected by SiPMs (6mm-pitch)
- 3σ π-K separation for p<7 GeV/c.</li>
- A prototype developed by Canada group for Phase-1 run
- Hybrid aerogel + gas RICH by adding gas for Phase-3 to extend up to 15 GeV/c

### **PID Detectors : ToF Counters**



- PID by ToF counters for low momentum particles (~1 GeV/c)
- Start counter: X-shaped Cherenkov detector (Acrylic + MPPC)
  - < 40 ps timing resolution</li>
- Stop counter: Multi-gap Resistive Plate Chamber (RPC)
  - ~60 ps timing resolution
- Developed by J-PARC E50 group
  - Joined EMPHATIC for BG measurements

BGOegg RPC @ Spring-8



## **Some Important Points**

- EMPHATIC is an international experiment,
  - with very significant contributions from international partners,
  - much of which is already in hand, and the rest will be ready before the end of this summer.
- We have a significant number of early career scientists in the collaboration
  - Including 9 postdocs and 5-6 graduate students in Phase-1 and -2 runs
  - EMPHATIC is an excellent training ground for these scientists, a rare opportunity to participate in the full life cycle of an experiment, from design through publication of results
- We have lost at least 1.5 years in our original run plan due to the pandemic
  - Canadian and Japanese participation is limited in time, and we expect all non-US groups to have to cease participation by the end of 2023, but some may need to cease earlier.
  - It is therefore imperative that we move as quick as possible to collect data, starting at the end of 2021.