Comparing the Background Model 2 with MCC11

Fang Xie DUNE BGTF meeting 17 Dec 2020

Simulation of Radon in LAr

- Start with ²²²Rn in LAr.
- Simulation of other BG isotopes from in different materials/detector components is coming soon.
- Larsoft and dunetpc version: larsoft_v09_10_02_e19_prof dunetpc develop branch (v09_10_02)
- Generator: RadioGen vs DECAY0

Proposing Background Model 2

Position	Isotope	Activity/Unit	Reference
LAr	$^{39}\mathrm{Ar}$	$0.00141~\mathrm{Bq/cc}$	MCC11
LAr	$^{42}\mathrm{Ar}$	$0.0001283768~{\rm Bq/cc}$	MCC11
LAr	$^{85}\mathrm{Kr}$	$0.00016~\mathrm{Bq/cc}$	MCC11
LAr	222 Rn	$0.0000014~\mathrm{Bq/cc}$	New Goal
APA frame steel	$^{60}\mathrm{Co}$	$0.000082~\mathrm{Bq/cc}$	MCC11, MPIK
APA frame steel	$^{238}\mathrm{U}$	$0.0216~\mathrm{Bq/cc}$	Requirement
APA frame steel	232 Th	$0.00018~\mathrm{Bq/cc}$	ProtoDUNE I Bear
APA CuBe wires	U early	$0.000000258 \ {\rm Bq/cc}$	Measurement
APA CuBe wires	U late	${\leq}0.0000000034~{\rm Bq/cc}$	Measurement
APA CuBe wires	Th early	$0.0000000086~{\rm Bq/cc}$	Measurement
APA CuBe wires	Th late	$0.00000001 ~{\rm Bq/cc}$	Measurement
APA CuBe wires	$^{40}\mathrm{K}$	$0.0000039 \ {\rm Bq/cc}$	Measurement
APA electronic boards	$^{40}\mathrm{K}$	$0.0000037 \ {\rm Bq/cc}$	Majorana
APA electronic boards	$^{238}\mathrm{U}$	$0.0000058~\mathrm{Bq/cc}$	Majorana
APA electronic boards	$^{232}\mathrm{Th}$	$0.0000036~\mathrm{Bq/cc}$	Majorana
CPA	$^{40}\mathrm{K}$	$0.0027195 ~{\rm Bq/cc}$	MCC11
CPA	$^{238}\mathrm{U}$	$0.06105~\mathrm{Bq/cc}$	Requirement
PDs	222 Rn	$0.000005~\mathrm{Bq/cc}$	MCC11
PDs	210 Po	$0.0000001~\mathrm{Bq/cc}$	Estimation
Field Cage	$^{40}\mathrm{K}$	$0.000348~\mathrm{Bq/cc}$	EDELWEISS
Field Cage	226 Ra	$0.000216~\mathrm{Bq/cc}$	EDELWEISS
	228 Th	0.000427 Bq/cc	EDELWEISS

The proposed new background model was discussed on BGTF Meeting 14/10/2020. See my slides here: https://indico.fnal.gov/event/469 43/

Full table available here: <u>https://www.overleaf.com/6175337632brpsxjfxmryc</u>

New Radiological fcl File

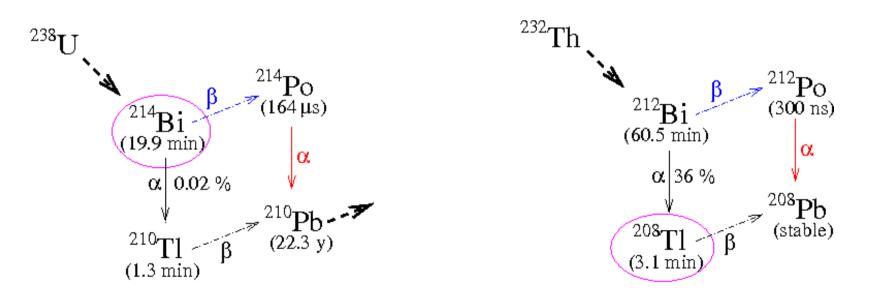
- Materials: more materials are now considered, including APA wires. Field Cage, etc.
- Isotopes: more BG isotopes, especially ²³²Th Chain and TI.
- Activities: up-to-date activity.

Isotopes

Checked the whole decay chain to make sure we have all "dangerous" alpha and beta emitter considered.

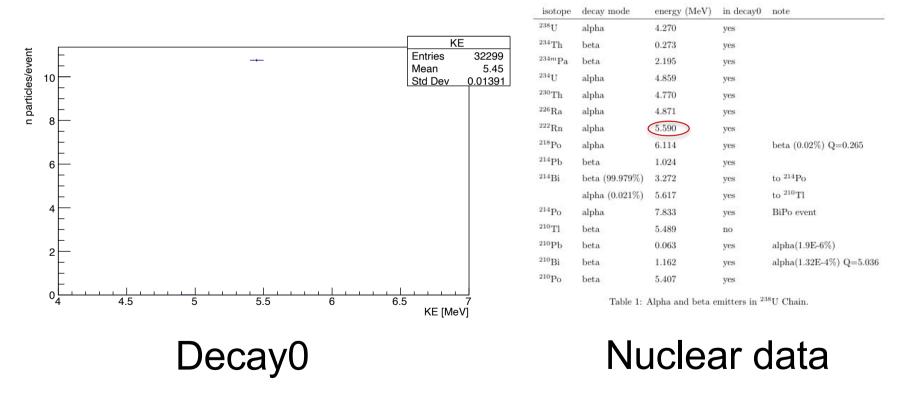
	isotope	decay mode	energy (MeV)	in decay0	note					
	²³⁸ U	alpha	4.270	yes	Πά.	isotope	decay mode	energy (MeV)	in decay0	note
	234 Th	beta	0.273	yes		$^{232}\mathrm{Th}$	alpha	4.083	no	
	$^{234m}\mathrm{Pa}$	beta	2.195	yes		228 Ra	beta	0.046	yes	
	$^{234}\mathrm{U}$	alpha	4.859	yes		$^{228}\mathrm{Ac}$	beta	2.127	yes	
	230 Th	alpha	4.770	yes		$^{228}\mathrm{Th}$	alpha	5.520	no	
	226 Ra	alpha	4.871	yes		224 Ra	alpha	5.789	no	
	222 Rn	alpha	5.590	yes		220 Rn	alpha	6.405	no	
	$^{218}\mathrm{Po}$	alpha	6.114	yes	beta (0.02%) Q=0.265	216 Po	alpha	6.907	no	
	$^{214}\mathrm{Pb}$	beta	1.024	yes		$^{212}\mathrm{Pb}$	beta	0.574	yes	
	^{214}Bi	beta (99.979%)	3.272	yes	to ²¹⁴ Po	$^{212}\mathrm{Bi}$	beta (64.06%)	2.254	yes	to 212 Po
		alpha (0.021%)	5.617	yes	to 210 Tl		alpha (35.94%)	6.207	yes	to 208 Tl
	214 Po	alpha	7.833	yes	BiPo event	212 Po	alpha	8.954	yes	BiPo event
<	$^{210}\mathrm{Tl}$	beta	5.489	no		208Tl		5.001		Diroevent
	$^{210}\mathrm{Pb}$	beta	0.063	yes	alpha(1.9E-6%)		beta	5.001	yes	
	$^{210}\mathrm{Bi}$	beta	1.162	yes	alpha(1.32E-4%) Q=5.036		Table 2: Alpha ar	d beta emitters	in ²³² Th Cha	ain.
	210 Po	beta	5.407	yes						

Table 1: Alpha and beta emitters in $^{238}\mathrm{U}$ Chain.


Full table available here: <u>https://www.overleaf.com/6175337632brpsxjfxmryc</u>

Adding TI208 & TI210

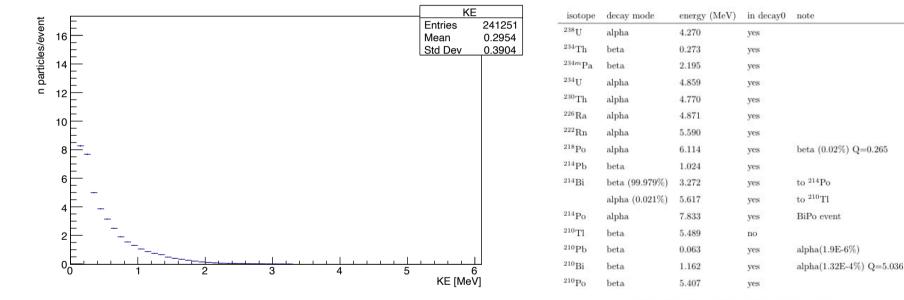
Added some decays that were not considered in MCC11, such as: TI208, TI210. BiPo event was generated automatically, but the TI was ignored in the past. And unfortunately can not be simply added to the chain.

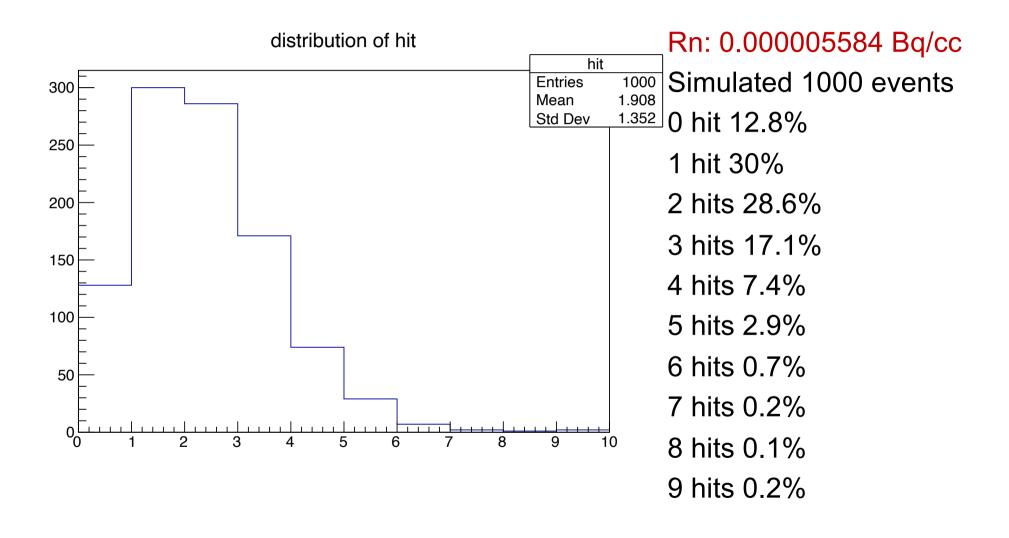

My solution: treat them as separate isotopes, and use the modified activity = branching ratio * activity of the Th232/U238 chain respectively.

α Energy of ²²²Rn

α energy generated by decay0 generator is 5.45 MeV, and it was 5 MeV from in RadioGen module used for MCC11.

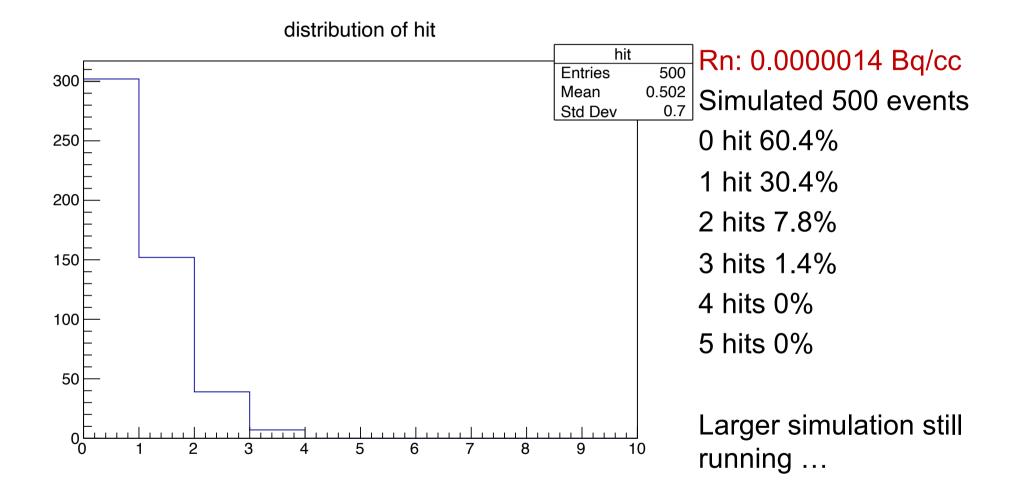
β Energy Spectrum of ²³⁸U Chain



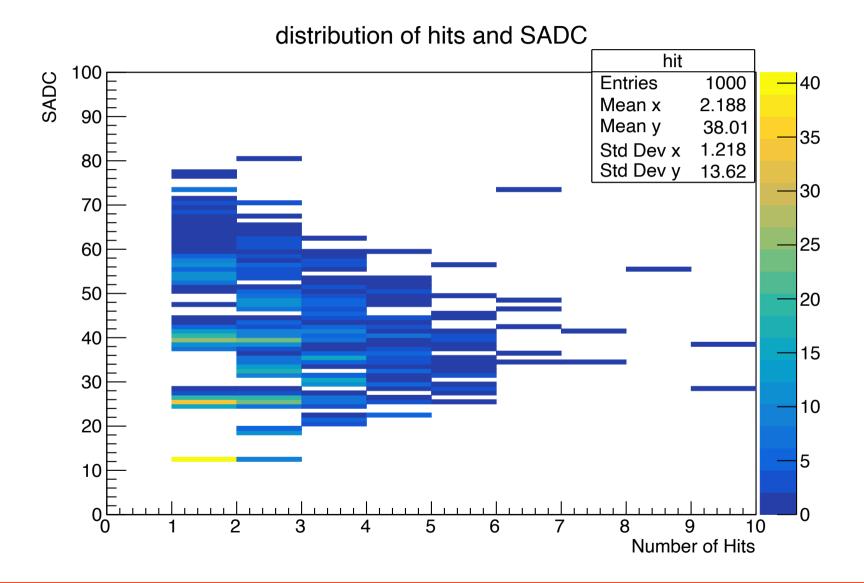

Table 1: Alpha and beta emitters in ²³⁸U Chain.

Decay0

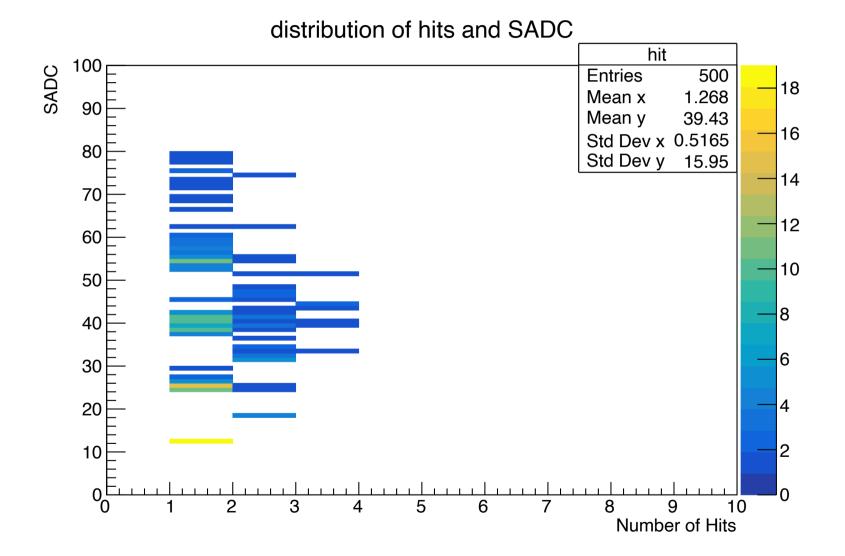
Nuclear data



Distribution of Hits – MCC11



Distribution of Hits – BG Model 2



Hits & Summed ADC – MCC11

Hits & Summed ADC – BG Model 2

- Radon only -> full BG simulation
- Determine an approximate upper limit that the SN trigger can tolerate for each of the BGs.

