SAND TPC simulations

Pierre Granger - Accelerator neutrino group CEA 12/15/2020

Irfu - CEA Saclay

The analysis introduction

Goals of the analysis

- Estimating the resolution requirements with DUNE beam
- Evaluate the impact of different parameters such as the pad size, charge spreading (RC) and electronics shaping time.

Data used

- Only FHC for now
- Interactions simulated in the whole detector (Guang's simulations)

The TPCs in SAND

• 3 TPCs :

- DOWNSTREAM : (x,y,z) 3.3 m × 3 m × 0.77 m
- BOTTOM and TOP : (x,y,z) 3.3 m \times 0.57 m \times 1.41 m
- Cathode in the middle of the TPCs (x direction)
- 2 readout planes for each tpc

Estimation of P_T resolution

A resolution < 2 % can be achieved if the occupency is reasonable.

Simulation

Events generation

- Events are generated with GENIE.
- Energy deposits in all the active areas of the detector are computed by GEANT.

TPC simulation

- 1. Events are given a vertex time according to the beam time profile.
- 2. Energy deposition segments of charged particles are projected onto ERAMs
- 3. Drift effects taken into account : drift time, longitudinal spread, transversal spread
- 4. Fixed charge spreading applied on pads
- 5. Each pad hit is stored
- 6. Computing overlaps for each pad in a given time window (proxy for spreading time + shaping time).

From then we study the number of tracks with overlaps and the number of overlapping pads for events with more than 2 tracks.

Timing

- 10 μs spills of 6 100 ns separated bunches
- ullet Maximum longitudinal spread is $\sim 50\,\mathrm{ns}$

T2K gas parameters :

- $v_{drift} = 7.8 \, cm \, \mu s^{-1}$
- $\bullet \ \sigma_{\it L} = 290\,\mu{\rm m}/\sqrt{\rm cm}$

Full spill example

Statistics about events

- 93,017 simulated events in 1,000 spills
- Only 1,714 interactions inside 3DST
- 1,363 3DST interactions lead to at least 1 track in a TPC
- 8,104 ECAL+KLOE interactions lead to at least 1 track in a TPC

Track multiplicity per event

Events with 0 tracks are not shown but are taken into account in the event proportions.

Overlaps

2 different kind of overlaps are considered

- inter-event overlaps : overlaps between tracks of two different events from the same spill
- intra-event overlaps : overlaps between tracks of the same event

Evolution of inter-events overlaps with charge spread - DOWNSTREAM

10 mm charge spread on each side
 3 pads multiplicity.

The introduction of charge spreading slightly increases the number of inter-events overlaps.

11

Evolution of inter-events overlaps with charge spread - TOP

We see the same kind of effect for the TOP tpc but with less importance.

Evolution of intra-event overlaps with charge spread - DOWNSTREAM

Only events with at least 1 track in the TPC are considered.

Charge spreading increases the amount of overlapping pads.

Evolution of inter-events overlaps with pad size - DOWNSTREAM

Number of overlapping events per spill DOWNSTREAM -No charge spread; Time interval: 400ns Pad size : 5mm Pad size · 7mm Pad size : 10mm

Number of overlapping tracks per spill DOWNSTREAM -No charge spread: Time interval: 400ns

Number of overlapping pads per spill DOWNSTREAM -

Using smaller pads only slightly reduces the number of inter-events overlaps.

Evolution of inter-events overlaps with pad size - TOP

We see the same kind of effect for the TOP tpc but with less importance.

Evolution of intra-event overlaps with pad size - DOWNSTREAM

Pad size seems not to impact largely the number of overlaps.

Evolution of inter-events overlaps with time interval - DOWNSTREAM

Number of overlapping events per spill DOWNSTREAM
No charge spread; Pad size: 10mm

Time interval : 200ns
Time interval : 400ns
Time interval : 1000ns
Time interval : 1000ns
Time interval : 1000ns
Time interval : 1000ns

0 1 2 3 4 5 6 7

Number of overlapping tracks per spill DOWNSTREAM
No charge spread: Pad size: 10mm

The shaping time is very important to discriminate the tracks in time and impacts a lot inter-events overlaps.

Evolution of inter-events overlaps with time interval - TOP

We see the same kind of effect for the TOP tpc but with less importance.

Evolution of intra-event overlaps with time interval - DOWNSTREAM

Time window has no effect on the number of overlapping pads for intra-event overlaps.

Conclusion on inter-events overlaps

- The amount of inter-events overlaps is driven by the choice of the shaping time.
- Charge spreading and pad size only have a moderate offect for this case of overlaps.

Total number of overlaps - DOWNSTREAM

Depending on the configuration, from 4% to 9% of events have at least one overlapping pad (3% to 6% of tracks).

Total number of overlaps

Depending on the configuration, from 3% to 4% of spills have overlapping tracks in DOWNSTREAM TPC (1% to 2% of tracks for TOP TPC).

Conclusions

- Choosing a low enough shaping time is necessary to ensure event separation in a given spill.
- Charge spreading increases the amount of overlaps mostly inside given events.
- Pad size seems to have only little effect on the overlaps (at least in the considered range).
- Reducing pad size allows to reach better p_T resolutions but the resolution seems already good for 1cm pads.

Backup slides

Understanding events with a lot of overlapping pads

Total number of overlaps - TOP/BOTTOM

